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A study of turbulent wake dynamics using a novel
localized stability analysis

By X. S. Liang { AND M. Wang

This paper briefly presents a unified, localized treatment of hydrodynamic stability
relating the stability theory to experimental and numerical results, which are in gen-
eral highly nonlinear, intermittent, and involve multiple scales in space and time. The
localization in time is achieved with the multiscale window transform, a mathemati-
cal machinery developed by Liang & Anderson (2004); while the spatial dimension is
localized through “transfer-transport separation”, which is made precise with the intro-
duction of the concept perfect transfer. The theory is applied to investigate the dynamics
of cylinder wakes. A remarkable observation is that rapid amplification in perturbation
energy does not necessarily correspond to instability. In a saturated laminar wake, an
absolute instability is identified with two local transfer lobes attached to the cylinder
surface. In the turbulent case, the instability is located far away downstream and has
distinct patterns. The dynamics is structured on three scale windows, among which the
meso-scale window hosts a regularly growing mode. This mode is maintained through a
primary instability. Although its energy can be ultimately traced to the base flow, the
turbulent or sub-mesoscale motion is sustained through two different mechanisms: The
first is directly from the background, and is distributed rather symmetrically as two side
lobes along the wake boundary; the second comes from a secondary instability of the
regular meso-scale process, appearing mainly as a form of monopole in the center. On
all the instability maps, there exist sporadic inverse transfer spots. This inverse transfer
or self-laminarization has profound implications for vortex suppression, allowing us to
propose a generic strategy to get turbulence under efficient control.

1. Introduction

We introduce a novel localized hydrodynamic stability analysis and show how it can
be utilized for turbulence research, particularly, for wake dynamics research. Like any in-
finite dimensional dynamical process, hydrodynamic instabilities are generally localized
in space and time. This is especially apparent in the turbulence context, where processes
are usually highly nonlinear and tend to occur intermittently over limited domains with
irregularity and mobility. A hydrodynamic stability analysis thus should be able to un-
ravel dynamics on a local basis in order to allow for a faithful representation of nature.
The challenge is, however, that the conventional concept of stability is a notion over a
system (e.g., Lin 1966; Drazin & Reid 1982), to which every location belongs, and hence
it is difficult to localize a dynamically isolated hotspot for such an analysis to be per-
formed. This problem is not new. Specific approximate approaches have been sought in
tackling certain problems. An example is the parcel stability analysis, which has been
applied to the symmetric instability study (see Holton 1992). Other approaches include
those used in the study of absolutely and convectively unstable flows (e.g., Pierrehum-
bert & Swanson 1995; Huerre & Monkewitz 1990), in the treatment of localized standing
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Rankine-Hugoniot shocks (Chakrabarti 1989), and in the investigation of plasma insta-
bility (e.g., Chu et al. 1996). These analyses are either linear (e.g., WKB method) or
formulated in the Lagrangian sense, and as a result their utility is limited.

Liang et al. (2004) developed a novel approach to give this old problem a unified solu-
tion. Their generalized hydrodynamic stability analysis is localized, nonlinear, and hence
applicable to fluid flows on a generic basis. In the following section, we give a brief intro-
duction to the theory. In particular, we show how the interaction between background
and perturbation structures can be computed as a field-like (Eulerian) variable in a real
time mode. The theory is then applied to study the wake dynamics involving vortex
shedding behind a circular cylinder. We first examine a laminar wake (Sec. 3), investi-
gating how it is evolved and sustained. This is followed by an analysis of a turbulent wake
(Sec. 4) to study its distinct physics and draw contrast to the laminar case. In Sec. 5,
conclusions are drawn and a strategy for optimal turbulence control is proposed.

2. Multiscale window transform and localized stability analysis

Hydrodynamic stability in the classical Lyapunov formalism is essentially an energetic
analysis. That is to say, a system is unstable provided that disturbances grow. Here
disturbances are measured by a norm, or energy, over the whole domain under concern.
The novelty of our new stability analysis approach is to localize the Lyapunov norm to
make it a field-like variable. We need to consider the localization both in time and in
space.

2.1. Time localization - Multiscale window transform

At the heart of the localized stability analysis is how processes in the context of a function
space are organized into some subspaces or scale windows with distinct ranges of time
scales, as well as time instants. In a classical framework, multiscale decomposition is at
odds with energy localization. In Liang et al. (2004), this difficulty is overcome through
the development of a machinery, multiscale window transform (MWT), which we briefly
introduce hereafter. For details, see Liang & Anderson (2004).

MWT tailored specifically to stability analysis can be introduced with the aid of a
highly localized scaling basist ¢(t) (Fig. 1la). The basis is obtained through orthonormal-
ization of the cubic spline. Fig.1b shows its periodized counterpart ¢? (t). Given a field
p=p(t), t € [0,1] a scaling reconstruction (e.g., Strang & Nguyen 1997) can be utilized
to fulfill an orthogonal (in L»[0,1]) decomposition to obtain a large scale part p~°, and
an eddy part p~! or more. These parts are further transformed on a space spanned by
{¢i1}n, n=0,1,...,29t — 1, with 279t the smallest scale that the given dataset resolves.
This transform, which involves scale ranges or windows, rather than individual scales
as in traditional transforms, is termed “multiscale window transform”. Specifically, we
have a large-scale window transform and an eddy window transform in a two-window
decomposition.

MWT has a property called “marginalization” which allows one to express the energy
for a scale window simply as the square of the transform coefficient for that window. Given
a time series p(t), we denote the MWT as py®, where w = 0,1, ... signify large-scale
window, eddy-scale window, and so forth. The marginalization, which we will henceforth
write as M,,, is a special operator of summation over time steps n.

t This is a special case. An MWT in a generic sense does not rely on the choice of basis. This
is one aspect where MWT differs from other localized analysis such as wavelet transform.
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FIGURE 1. (a) Scaling function ¢ constructed via orthonormalization from cubic splines (see
Strang & Nguyen 1997). (b) The periodized basis ¢/, (t) = 325> ¢ (Zj (t+2)— n)
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2.2. Space localization - Transfer-transport separation

The spatial dimension localization is another crucial issue. In a local sense, perturbation
amplification does not necessarily correspond to instability, as energy needed to fuel
the growth could be transported from other places into the domain. Liang et al. (2004)
termed this issue as “transfer-transport separation”. In the following, we briefly present
their approach to this problem.

Consider an ideal and incompressible fluid flow. The governing equation is

ov 1

—=-V- — —VP. 2.1

T (wv) =~ (2.1)
Take an MWT for time step n and window w on both sides and dot with ¥,;“. It gives

Ky = NLy + QB (2.2)

where K7 ~ 1977 - 977, Q8, = —%V - (¥ P®), and the nonlinear term NLY =
—_—— NTT
- [V (vv), ] - ¥, is a representation of processes intertwined with transport Q% ,
and transfer T,77. The major issue of spatial localization is how to have these processes
precisely separated. This is achieved with the introduction of a concept perfect transfer.
By definition a perfect transfer T, is a process which mediates among scale windows such
that M, > _ T =0, i.e., a redistribution of energy among scale windows which does
not generate nor destroy energy as a whole. Liang et al. (2004) established that NL; can
be precisely decomposed into a transport and a perfect transfer, and the decomposition

is unique. In the incompressible 2-D flow case,

1
T2 = 5 {@°)Y v, + G771V v, ) (23)

where vg = %, for S = u, and v. For 3-D flow, the third dimension can be added
likewise. k

Liang et al. (2004) showed that, with the aid of T)%, it is possible to introduce a
metric to measure the localized stability. Specifically, they showed that, except for an
opposite sign, CR = ()7 )(W'H)_w followed by a horizontal filtering is in compliance with
Lyapunov’s norm for a system losing stability from window w to window w + 1. Here the
superscript (w4 1) — w means an interaction analysis that selects out the transfer from

window w + 1 to window w from the nonlinearly intertwined processes. When CR < 0,
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the flow system is locally unstable, and vice versa. Note CR is a field-like variable, and
is hence capable of handling any highly localized analysis. For more realistic flows, CR
may be modified accordingly to ensure consistency with Lyapunov’s formalism. But as
this nonlinear transfer has essentially captured the dynamics, we might just define it this
way.

Note hydrodynamic stability may be understood with (7Z+1)@(@+1) "ag well as from
(T7)(=+)=>%_depending on what a time scale one chooses to observe the problem. They
are identical when marginalized, except for the opposite sign. In this case, a system is
unstable if CR > 0 and vice versa.

Also worthwhile to note is the concept of Reynolds stress.t Conventionally Reynolds
stress has been understood as the transfer mechanism between scale windows. Liang et
al. (2004) established that it does not conserve energy, and as a result, it is problematic
in representing transfer processes.

We close this section by remarking that many problems in fluid dynamics are made
easy in our framework. In CR = (T7)(®+)=% by switching w from 0 to 1 one may
accordingly introduce the concepts of primary instability and secondary instability. An-
other good example is about convective and absolute instabilities (e.g., Pierrehumbert
& Swanson 1995; Huerre & Monkewitz 1990; Oertel 1990 and references therein): A
moving negative CR means convective instability, while a persisting negative CR center
implies absolute instability. Likewise, local/global instability can also be studied simply
by examining the variation of the influential range of CR.

3. Wakes behind a circular cylinder: The laminar case

In this section, we investigate a laminar wake behind a circular cylinder. We particu-
larly want to explore the aspect of the dynamics that sustains the Karman vortex street,
through the convenience of the “stability structure” brought forth by our analysis.

3.1. Model description

We utilize a numerical model to generate the necessary dataset. The model solves the
incompressible Navier-Stokes equations on a C-type mesh using an energy-conserving,
hybrid finite-difference/spectral code described in Mittal and Moin (1997). The numeri-
cal scheme employs second-order central differences in the streamwise and cross-stream
directions, and Fourier collocation in the spanwise direction. The time advancement is
of the fractional step type in combination with the Crank-Nicholson method for viscous
terms and third order Runge-Kutta scheme for the convective terms. The Poisson equa-
tion for pressure is solved using a multigrid iterative procedure at each Runge-Kutta
substep.

Dimensionless variables are used in the following analysis, with the cylinder diameter
d as the length scale, free-stream velocity Uy as the velocity scale, and d/Us as the
time scale. We use z, y, and z to denote the streamwise, cross-stream, and spanwise
coordinates, respectively, with = and y origins located at the cylinder center.

The laminar flow simulation (2-D) is performed at Re = 200 on a 513 x 129 mesh,
covering a computation domain —40 < z < 25; —50 < y < 50. The simulation is initiated
with an “impulsive start”, and is run until a quasi-steady state is achieved. The results

1 Our formalism is equivalent to the classical Reynolds formalism when jo = 0 and a periodical
extension is adopted (see Liang et al. 2004).
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FIGURE 2. A snapshot of the simulated vorticity in a cylinder wake (Re = 200.

are then uniformly mapped onto a cartesian coordinate with Az = Ay = 0.04, and time
stepsize At = 0.152. Shown in Fig. 2 is a snapshot of the simulated vorticity field.

3.2. Stability structure

We now investigate the localized stability. It is analyzed from the standing point of
energy loss to eddy structures from the large-scale window (that is to say, we analyze
it on window 0). This helps us to grasp the stability from a longer time span, without
paying too much attention to short scale details. We present only the results after the
system reaches an equilibrium, since the transient period is artificial and highly dependent
on initial conditions. In this case, a consistent choice of large-scale window bound is
jo = 0. (We have proved in Liang et al. (2004) that when jo = 0 the large-scale window
reconstruction is equivalent to the duration average.)

The stability metric in terms of energy loss from the base flow to the eddy window is
thereby computed. The result is nearly invariant to time for all the time steps considered
because the wake flow is quasi-steady. As shown in Fig. 3 for ¢ = 38.3, two negative
centers sit symmetrically about the axis y = 0. These centers, which embrace the near
wake and characterize the energy transfers from the basic flow toward the eddy window,
show clearly that the system is absolutely unstable, and the instability is mainly limited
within the two negative lobes attached to the cylinder. An analysis using the initial
evolution data (not shown here) exhibits how this absolute instability is invoked.

Also shown in Fig. 3a is that CR is non-positive everywhere throughout the domain.
That is to say, a global instability has been excited. In contrast to the classical notion,
the global instability does not just mean a uniform energy transfer everywhere. Rather,
it has a spatial structure.

It is conventional to read instability by examining perturbation growth from simula-
tions. Here we also plot the perturbation/eddy energy growth K¢%_Shown in Fig. 3b
is the K% for the same time instant as in Fig. 3a. Apparently, the distributions in
these two maps are different. Eddy energy grows very fast along y = 0 in the near wake,
while in the same region the transfer is virtually zero. It can be misleading to assess the
stability of a flow system by visual inspection of the simulated fields.



216 X. S. Liang € M. Wang

@ T 0 (t=38.3) (b) 0K®/at (t=38.3)
2 2
1 -0.25 1 3
- o -0.75 -0 15
-1.25 0
-1 -1
-1.75e-1 -1.5e-3
-2 -2
0 2 4 0 2 4
X X

FIGURE 3. (a) Instability metric for ¢ = 38.3 in terms of energy loss from the large-scale window
to the eddy window. Negative transfer indicates instability. (b) Time rate of change of eddy
energy K° for t = 38.3). Positive K°4¥ means gain in eddy energy.

Vorticity magnitude at t=13.2

FIGURE 4. A snapshot of the instantaneous vorticity magnitude for the turbulent wake. The
Reynolds number is 3900.

4. Wakes behind a circular cylinder: The turbulent case
4.1. Model description

To generate a turbulent dataset at Re=3900, we adopt the same numerical model as in the
preceding section except that the Navier-Stokes equations are solved in conjunction with
the dynamic subgrid scale model (Germano et al. 1991; Lilly 1992). In the simulation,
401 x 120 x 48 grid points are used, and the domain size is given by —22 < z < 17,
—24 <y < 24, and —7/2 < z < w/2. The computational solutions have been validated
against previous results in terms of key parameters such as the drag coefficient and
vortex-shedding frequency (Strouhal number). After the computation reaches a statistical
equilibrium, we interpolate the results onto a uniform cartesian mesh (Az = 0.04, Ay =
0.02, Az = 7/48) and 28 = 256 equal time steps with At = 0.0387. Fig. 4 shows the
instantaneous vorticity magnitude in a spanwise section at ¢ = 13.2 (arbitrary starting
time).

4.2. Window bound determination

Turbulence problems involve more complicated scale window structures. Before moving
on to stability analysis, we need to determine the respective scale window bounds. We
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FIGURE 5. Time wavelet spectrum analysis for w at point (2, —0.5, 0). Unfolded on the map
is the logarithm of the square of wavelet transform coefficients. The abscissa is time, and the
ordinate scale level j, which is defined such that 2777 (T = time duration) is the time scale.
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FIGURE 6. Reconstructions of the time series of w in Fig. 5. Parameters used are jo = 1, and
j1=2.

use a wavelet time spectrum analysis for this purpose. The time series are chosen from
the velocity components at several typical points within the wake.

We only present the analysis of one time series. Fig. 5 displays the spectrum for u at
point (2, —0.5, 0). For clarity, the time average has been removed from the signal. We see
from the figure that there is a clear peak at scale level j = 1, and another one between
j = 3 and 4. This implies that the choice jo = 0 and j; = 2 allows for a demarcation
of the function space into a well-defined large-scale window, a meso-scale window, and a
sub-mesoscale window. The reconstructions with these parameters (Fig. 6) present from
another point of view this partition. The growing oscillating meso-scale reconstruction
hosts the time scale of vortex shedding, which is modulated by the slower varying large-
scale reconstruction. The sub-mesoscale window represents the rapidly varying small
scale turbulence. We are to investigate how the meso-scale window arises, and where the
turbulent sub-mesoscale structure derives its energy.
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4.3. Turbulence structure analysis

As in the laminar case, we continue to analyze the hydrodynamic stability from a longer-
time span point of view. That is to say, we use energy loss from one window to another,
rather than energy gain within a window, as the criterion. The results are presented in a
spanwise plane, although the analysis is fully three-dimensional. The turbulent flow field
is statistically equivalent in all the spanwise planes, but over the time period considered,
the stability metric is not invariant to the spanwise location.

Figure 7 shows how energy is transferred from the background to the meso-scale struc-
ture. Here negative value indicates instability. There are two centers of instability for all
the time steps shown. From the sequence, two evolutionary patterns are evident. The first
is the orientation evolution: In the beginning the two centers are aligned in a northwest-
southeast pattern; their relative location varies gradually into a juxtaposition symmetric
around y = 0, and finally they evolve into a southwest-northeast orientation. The second
is the relative transfer strength between these two centers. Originally, the southern center
is much weaker than the northern one, but beginning at ¢ = 4.1, they switch status, and
by t = 8.8, a pattern opposite to the original appears.

In comparison to Fig. 7, the energy lost from the background to the turbulent structures
are fairly symmetric about the x-axis (see Fig. 8). This is to some degree similar to the
laminar case, although the transfer strength oscillates, and the hotspots are detached
from the cylinder.

The above computations are based on the large-scale window. Interactions between the
meso-scale and sub-mesoscale processes also require analysis for the meso-scale window.
Shown in Fig. 9 is the energy loss from the meso-scale process to the turbulent processes.
In contrast to the dipole structure in Figs. 7 and 8, here the transfer is mainly within
a monopole except in the beginning. And, moreover, the monopole lies near the z-axis.
The energy gained by the meso-scale process from the basic flow then cannot be used
directly to fuel the turbulence. It must be first transported from the two lobes to the
center before the transfer occurs.

The above observations suggest that there is clearly a primary instability, followed by
a secondary instability, in the turbulent wake. The primary instability is composed of
two parts: one accounts for the meso-scale growing mode; another for the turbulence
along the wake boundary. The meso-scale dynamics is regular, as is shown in Fig. 6.
The wake becomes asymmetric about the x-axis because this process is excited in an
asymmetric way. The secondary instability occurs mainly in the middle near the z-axis.
It funnels energy to sustain the turbulence there. Both the turbulent motions along the
wake boundary and in the middle acquire energy in a fairly symmetric way, indicating
that the system is in a statistical equilibrium.

A remarkable feature in the transfer maps in Figs. 7, 8 and 9 is the positive spots/centers
sandwiched in the instability structures. These inverse transfers indicate that, even
though the flow is turbulent, there exist processes which introduce orders rather than
chaos to the system. We will see later in the discussion that these inverse transfers may
have profound implications for turbulence control.

5. Discussion and conclusions

We have briefly introduced a localized hydrodynamic stability analysis to relate sta-
bility theory to experimental and numerical data, which are in general highly nonlinear
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FIGURE 7. Stability metric CR in terms of energy transfer from the large-scale window to the
meso-scale window for the turbulent wake. Negative values indicate instability.

and intermittent in space and time. We have utilized the theory to investigate the wake
behind a cylinder, both in a laminar flow and in a turbulent flow.

The localized stability analysis is developed on a subspace decomposition-based and
localized mathematical machinery, multi-scale window transform. In this analysis, a flow
system is organized into some appropriately defined time scale windows. The classical
formalism in the sense of Lyapunov is then localized in time to obtain a metric to measure
the hydrodynamic instability. The key to spatial localization is the transfer-transport
separation, which is made possible through introducing the concept of perfect transfer.
For a fluid flow, the resulting criterion of instability bears a spatio-temporal structure,
which is conceptually different from the classical formalism where stability is a notion
over the whole system. This allows for much more flexibility in investigating flows with
regions of interest that are difficult to demarcate. It is particularly useful for open flows,
and flows with dynamics mobile in nature, such as those involving convective instability
and absolute instability.

The theory has been applied to investigate the wake dynamics behind a circular cylin-
der. We have examined two different cases: a laminar wake (Re=200), and a turbulent
wake (Re=3900). In the laminar case, the metric shows a symmetric transfer pattern,
with two lobes of local absolute instability attached to the cylinder surface. A global
instability mode is also seen at the stage. In contrast to the classical formalism, the eddy
energy growth pattern does not necessarily imply instability.

The turbulent wake case shows a more complicated and interesting instability struc-
ture. Processes involved are structured on three distinct scale windows, among which
the meso-scale flow sees a clear regularly growing mode for the time period analyzed. A
primary instability is identified, with transfer centers appearing in pair along the wake
boundary. It provides energy both for the meso-scale window and for the sub-mesoscale
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FIGURE 8. Stability metric CR in terms of energy transfer from the large-scale window to the
sub-mesoscale window for the turbulent wake. Negative values indicate instability.

turbulence window. The transfer-center pair for the meso-scale window oscillates in ori-
entation as well as strength, accounting mostly for the asymmetry of the wake vortex
shedding, while that for the sub-mesoscale window adopts a pattern fairly symmetric in
location around the z-axis. The turbulence also derives its energy from the meso-scale
window. This secondary instability is in a monopole form and appears mainly in the
center around the z-axis. Both the primary instability and the secondary instability are
absolute in character.

A potential application of the above research is flow control. Based on previous studies
(e.g., Huerre & Monkewitz 1990), absolute instability plays a pivotal role in vortex shed-
ding, and as a result, a crucial step in suppressing the formation of the Karman vortex
street is to identify the absolute instability regions. Our methodology provides a natural
and easy way to achieve this. Although there is still some distance to go before a mature
scheme of vortex suppression is formulated, it seems reasonable to suggest that control
should be best applied at the maximum energy transfer centers or at locations directly
upstream of these centers. In the laminar case the instability lobes are attached to the
cylinder surface and their centers are downstream of the top and bottom of the cylinder,
suggesting that applying control near these locations may be effective. Indeed, our sim-
ple numerical experiments using surface suction show that the areas between 70 to 90
degrees and between —70 to —90 degrees from the x-axis are the most effective suction
locations for suppressing vortex shedding and reducing drag on the cylinder. Controls in
areas below 50 degrees and above —50 degrees are counterproductive. We will explore
this in a more systematic fashion in the future.

We have seen that on all the instability patterns there are sandwiched stable centers.
These stable structures indicate that, although the flow is turbulent, processes of inverse
transfer or self-laminarization may exist. This phenomenon has profound implications.
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FIGURE 9. Stability metric CR in terms of energy transfer from the meso-scale window to the
sub-mesoscale window for the turbulent wake. Negative values indicate instability.

As is well known, the objective of turbulence control is to inhibit eddy energy from
being generated, and accordingly, the traditional control strategy is based on suppression
of turbulence growth. The problem is, looking solely at the turbulence growth could be
misleading, as energy increase does not necessarily occur in accordance with transfer
(cf. Fig. 3). In a region with eddy energy growing the transfer could be toward the large-
scale flow. This is best illustrated in the two-point system in Fig. 10, where eddy energy
(K8 and K£WY) grows at both locations 1 and 2, while the transfer at location 2 is
toward the large-scale window. Control of the perturbation energy growth at both points
1 and 2 indeed helps to suppress the onset of turbulence, but it is not optimal in terms
of energy savings. At point 2, there is an intrinsic trend of laminarization. Suppression
of K% defeats this trend as well, and therefore reduces the control performance. To
take advantage of this laminarization, the control should be applied at point 1 only, and
the optimal objective functional should be chosen to be Ty, rather than K% + K2,
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