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Abstract

A new methodology,multiscale energy and vorticity analysis(MS-EVA), is developed to in-
vestigate the inference of fundamental processes from oceanic or atmospheric data for complex
dynamics which are nonlinear, time and space intermittent, and involve multiscale interactions.
Based on a localized orthogonal complementary subspace decomposition through the multi-
scale window transform (MWT), MS-EVA is real problem-oriented and objective in nature. The
development begins with an introduction of the concepts of scale and scale window and the de-
composition of variables on scale windows. We then derive the evolution equations for multi-
scale kinetic and available potential energies and enstrophy. The phase oscillation reflected on
the horizontal maps from Galilean transformation is removed with a 2D large-scale window
synthesis. The resulting energetic terms are analyzed and interpreted. These terms, after being
carefully classified, provide four types of processes: transport, transfer, conversion, and dissipa-
tion/diffusion. The key to this classification is the transfer–transport separation, which is made
possible by looking for a special type of transfer, the so-calledperfect transfer. The intricate
energy source information involved in perfect transfers is differentiated through an interaction
analysis.

The transfer, transport, and conversion processes form the basis of dynamical interpretation for
GFD problems. They redistribute energy in the phase space, physical space, and space of energy
types. These processes are all referred to in a context local in space and time, and therefore can be
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easily applied to real ocean problems. When the dynamics of interest is on a global or duration scale,
MS-EVA is reduced to a classical Reynolds-type energetics formalism.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Energy and vorticity analysis is a widely used approach in the diagnosis of geophysical
fluid processes. During past decades, much work has been done along this line, examples
includingHolland and Lin (1975), Harrison and Robinson (1978), Plumb (1983), Pinardi
and Robinson (1986), Spall (1989), Cronin and Watts (1996), to name but a few. While these
classical analyses have been successful in their respective applications, real ocean processes
usually appear in more complex forms, involving interactions among multiple scales and
tending to be intermittent in space and time. In order to investigate ocean problems on a
generic basis, capabilities of classical energetic analyses need to be expanded to appropri-
ately incorporate and faithfully represent all these processes. This forms the objective of
this work.

We develop a new methodology, multiscale energy and vorticity analysis (MS-EVA),
to fulfill this objective. MS-EVA is a generic approach for the investigation of multiscale
nonlinear interactive oceanic processes which occur locally in space and time. It aims
to explore pattern generation and energy and enstrophy budgets, and to unravel the in-
tricate relationships among events on different scales and in different locations. In the
sequels to this paper (referred to as LR1),Liang and Robinson (2005, 2004)(LR2 and
LR3 hereafter), we will show how MS-EVA can be utilized for instability analysis and
how it can be applied to solve real ocean problems which would otherwise be difficult to
solve.

In order to be real problem-oriented, MS-EVA should contain full physics. Approxima-
tions such as linearization are thus not allowed. It must also have a multiscale representa-
tion which retains time and space localization. In other words, the representation should
retain time intermittency, and should be able to handle events occurring on limited, irreg-
ular and time dependent domains. This makes MS-EVA distinctly different from classical
formalism.

MS-EVA should also bescale windowed, i.e., the multiscale decomposition must be able
to represent events occurring coherently on scale ranges, orscale windows. Loosely speak-
ing, a scale window is simply a subspace with a certain range of scales. A rigorous definition
is deferred to Section2. In general, GFD processes tend to occur on scale windows, rather
than individual scales. We refer to this phenomenon as scale windowing. Scale windowing
requires a special bulk treatment of energy rather than individual scale representations, as
transfers between individual scales belonging respectively to different windows could take
a direction opposite to the overall transfer between these windows.

Multiscale events could be represented in different forms. One of the most frequently
used is wave representation (e.g., Fourier analysis), which transforms events onto many
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individual scales; another frequently used form is called eddy representation(Tennekes and
Lumley, 1972), in which a process is decomposed into a large-scale part and an eddy part,
each part involving a range of scales. Because of its scale window nature, we need an eddy
representation for MS-EVA. The resulting energetics will be similar to those of Reynolds
formulation, except that the latter is in a statistical context.

To summarize, it is required that MS-EVA handle fairly generic processes in the sense
of multiscale windowing, spatial localization, and temporal intermittency; as well as re-
tain full physics. Correspondingly an analysis tool is needed in the MS-EVA formulation
such that all these requirements are met. We will tackle this problem in a spirit simi-
lar to the wavelet transform, a localized analysis which has been successfully applied to
studying energetics for individual scales (e.g.,Iima and Toh, 1995; Fournier, 1999). Specif-
ically, we need to generalize the wavelet analysis to handle window or eddy decomposition.
The challenge is how to incorporate into a window the transform coefficients (and hence
energies) of an orthonormal wavelet transform which are defined discretely at different
locations for different scales, while retaining a resolution satisfactory to the problem. (Or-
thonormality is essential to keep energy conserved.) The next section is intended to deal
with this issue. The new analysis tool thus constructed will be termedmultiscale window
transform, or MWT for short. The whole problem is now reduced to first the building
of MWT, and then the development of MS-EVA with the MWT. In Sections3–7, we
apply MWT to derive the laws that govern the multiscale energy evolutions. The multi-
scale decomposition is principally in time, but with a horizontal treatment which preserves
spatial localization. Time scale decomposition has been a common practice and meteo-
rologists find it useful for clarifying atmospheric processes. We choose to do so in order
to make contacts with the widely used Reynolds averaging formalism, and more impor-
tantly, to have the conceptscaleunambiguously defined (cf. Section2.1), avoiding extra
assumptions such as space isotropy or anisotropy. Among these sections, Section3 is de-
voted to define energy on scale windows, and Section4 is for a primary treatment with
the nonlinear terms. The multiscale kinetic and potential energy equations are first de-
rived in Sections5 and 6based on a time decomposition, and then modified to resolve
the spatial issue with a horizontal synthesis (Section7). In Section8, we demonstrate
how these equations are connected to energetics in the classical formalism. This section
is followed by an interaction analysis for the differentiation of transfer sources (Section
9), which allows a description of the energetic scenario with our MS-EVA analysis in
both physical and phase spaces (Section10). As “vorticity” furnishes yet another part of
MS-EVA, in Section11 we briefly present how enstrophy evolves on multiple scale win-
dows. This work is summarized in Section12, where prospects for application are outlined
as well.

2. Multiscale window analysis and marginalization

In this section, we introduce the concept of scale window, multiscale window transform
(MWT), and some properties of the MWT, particularly a property referred to as marginal-
ization. A thorough and rigorous treatment is beyond the scope of this paper. For details,
the reader is referred toLiang (2002)(L02 hereafter) andLiang and Anderson (2005).
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2.1. Scale and scale window

The introduction of MWT relies on how a scale is defined. In this context, our definition
of scale is based on a modified wavelet analysis (cf.,Herńandez and Weiss, 1996). For
convenience, we limit the initial discussion to 1D functions. The multi-dimensional case is
a direct extension and can be found in L02, Section 2.7. For any functionp(t) ∈ L2[0,1],1

it can been analyzed as (L02):

p(t) =
+∞∑
j=0

2j�−1∑
n=0

p̃jnψ
�,j
n (t), t ∈ [0,1], (1)

where

ψ�,j
n (t) =

+∞∑
	=−∞

2j/2ψ[2j(t + �	) − n], n = 0,1, . . . ,2j�− 1 (2)

andψ is some orthonormalized wavelet function.2 Here we choose it to be the one built
from cubic splines, which is shown inFig. 1a. The “period”� has two choices only: one
is � = 1, which gives a periodic extension of the signal of interest from [0,1] to the whole
real lineR; another is� = 2, corresponding to an extension by reflection, which is also an
“even periodization” of the finite signal toR (see L02 for details).

The distribution ofψ1,j
n (t) with j = 2,4,6 is shown inFig. 1b. Eachj corresponds to a

quantity 2−j, which can be used to define a time metric to relate the passage of temporal
events since a selected epoch. We call thisj ascale level, and 2−j the correspondingscale
over [0,1].

Given the scale as conceptualized, we proceed to define scale windows. In the analysis
(1), we can group together those parts with a certain range of scale levels, say, (j1, j1 +
1, . . . , j2), to form a subspace ofL2[0,1]. This subspace is called ascale windowof
L2[0,1] in L02 with scale levels ranging fromj1 to j2. In doing this, any function in
L2[0,1], sayp(t), can be decomposed into a sum of several parts, each encompassing
exclusively features on a certain window of scales. Specifically for this work, we define three
scale windows:

• large-scale window: 0≤ j ≤ j0,
• meso-scale window:j0 < j ≤ j1,
• sub-mesoscale window:j1 < j ≤ j2.

The scale level boundsj0, j1, j2 are set according to the problem under consideration.
Particularly,j2 corresponds to the finest resolution (sampling interval 2−j2) permissible
by the given finite signals. By projectingp(t) onto these three windows, we obtain its
large-scale, meso-scale, and sub-mesoscale features, respectively. This decomposition is
orthogonal, so the total energy thus yielded is conserved.

1 The notationL2[0,1] is used to indicate the space of square integrable functions defined on [0,1].
2 This is to say,{ψ(t − 	), 	 ∈ Z} (Z the set of integers) forms an orthonormal set.
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Fig. 1. Scaling and wavelet functions (a) and their corresponding periodized bases (� = 1) {φ�,jn (t)}n (left panel)
and{ψ�,j

n (t)}n (right panel) with scale levelsj = 2 (top),j = 4 (middle), andj = 6 (bottom), respectively (b).
The scaling and wavelet functionsφ andψ are constructed from cubic splines (seeLiang, 2002, Section 2.5).

2.2. Multiscale window transform

Scale windows are defined with the aid of wavelet basis, but the definition of multiscale
window transform does not follow the same line because of the difficulty we have described
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in the introduction, i.e., that orthonormal wavelet transform coefficients are defined dis-
cretely on different locations for different scales. To circumvent this problem, we make a
direct sum of the subspaces spanned by the wavelet basis{ψ�,m

n (t)}n, for all m ≤ j. The
shift-invariant basis of the resulting subspace can be shown to beφ

�,j
n (t) (L02), which is

the periodization [cf. (2)] of someφ(t), the orthonormal scaling function in company with
the wavelet functionψ(t). Hereφ is an orthonormalized cubic spline, as shown inFig. 1a.
We utilize theφ�,jn thus formed to fulfill our task. In the following only the related formulas
and equations are presented. The details are referred to L02.

LetV�,j2 indicate the total (direct sum, to be strict) of the three scale windows. It has been
established by L02 that any time signal from a given GFD dataset is justifiably belonging
to V�,j2, with some finite levelj2. Suppose we havep(t) ∈ V�,j2. Write

p̂jn =
∫ �

0
p(t)φ�,jn (t) dt, for all 0 ≤ j ≤ j2, n = 0,1, . . . ,2j�− 1. (3)

Given window boundsj0, j1, j2, andp ∈ V�,j2, three functions can be accordingly defined:

p∼0(t) =
2j0�−1∑
n=0

p̂j0
n φ

�,j0
n (t), (4)

p∼1(t) =
2j1�−1∑
n=0

p̂j1
n φ

�,j1
n (t) − p∼0(t), (5)

p∼2(t) = p(t) −
2j1�−1∑
n=0

p̂j1
n φ

�,j1
n (t), (6)

on the basis of which we will build the MWT later. As a scaling transform coefficient, ˆp
j
n

contains all the information with scale level lower than or equal toj. The functionsp∼0(t),
p∼1(t), p∼2(t) thus defined hence include only features ofp(t) on ranges 0− j0, j0 − j1,
andj1 − j2, respectively. For this reason, we term these functions as large-scale, meso-scale,
and sub-mesoscale syntheses or reconstructions ofp(t), with the notation∼0, ∼1, and∼2
in the superscripts signify the corresponding large-scale, meso-scale, and sub-mesoscale
windows, respectively.

Using the multiscale window synthesis, we proceed to define a transform

p̂∼�
n =

∫ �

0
p∼�(t)φ�,j2

n (t) dt (7)

for windows� = 0,1,2,n = 0,1, . . . ,2j2� − 1. This is themultiscale window transform,
or MWT for short, that we want to build. Notice here we use a periodized scaling basis at
j2, the highest level that can be attained for a given time series. As a result, the transform
coefficients have a maximal resolution in the sampledt direction.
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In terms ofp̂∼�
n , Eqs.(4)–(6)can be simplified as

p∼�(t) =
2j2�−1∑
n=0

p̂∼�
n φ�,j2

n (t), (8)

for � = 0,1,2. Eqs.(7) and (8)are the transform-reconstruction pair for our MWT. For
anyp ∈ V�,j2, it can be now represented as

p(t) =
2∑

�=0

2j2�−1∑
n=0

p̂∼�
n φ�,j2

n (t). (9)

A final remark on the choice of extension scheme, or the “period”� in the analysis. In
general, we always adopt the extension by reflection� = 2, which has proved to be very
satisfactory. (Fig. 4 shows such an example.) If the signals given are periodic, then the
periodic extension is the exact one, and hence� should be chosen to be 1. In case of linking
to the classical energetic formalism,� = 1 is also usually used.

2.3. MWT properties and marginalization

Multiscale window transform has many properties. In the following we present two of
them which will be used later in the MS-EVA development (for proofs, refer to L02).

Property 1. For anyp ∈ V�,j2, if j0 = 0,and� = 1 (periodic extension adopted), then

p̂∼0
n = 2−j2/2p∼0(t) = 2−j2/2p̄ = constant, for all n, and t, (10)

where the overbar stands for averaging over the duration.

Property 2. For p and q inV�,j2,

Mnp̂
∼�
n q̂∼�

n = p∼�(t)q∼�(t), (11)

where

Mn(p̂∼�
n q̂∼�

n ) =
N−1∑
n=1

p̂∼�
n q̂∼�

n + 1

2
[p̂∼�

0 q̂∼�
0 + p̂∼�

N q̂∼�
N ]. (N = 2j2) (12)

Property 1states that whenj0 = 0 and a periodic extension is used, the large-scale
window synthesis is simply the duration average.Property 2involves a special summation
over [0, N] (corresponding tot ∈ [0,1]), which we will call marginalizationhereafter.
The word “marginal” has been used in literature to describe the overall feature of a
localized transform (e.g.,Huang et al., 1999). We extend this convention to establish an
easy reference for the operatorMn. Property 2can now be restated as: a product of two
multiscale window transforms followed by a marginalization is equal to the product of
their corresponding syntheses averaged over the duration. For convenience, this property
will be referred to asproperty of marginalization.
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We close this section by making a comparison between our MWT and wavelet anal-
ysis. The commonality is, of course, that both of them are localized on the definition
domain. The first and largest difference between them is that the MWT is not a trans-
form in the usual sense. It is an orthogonal complementary subspace decomposition, and
as a result, the MWT coefficients contain information for a range of scales, instead of
a single scale. For this reason, it is required that three scale bounds be specified a pri-
ori in constructing the windows. A useful way to do this is through wavelet spectrum
analysis, as is used in LR3. Secondly, the MWT transform is projected onV�,j2, so trans-
form coefficients obtained for all the windows have the same resolution—the maximal
resolution allowed for the signal. This is in contrast to wavelet analysis, whose transform
coefficients have different resolution on different scales. We will see soon that, this maxi-
mized resolution in MWT transform coefficients puts the embedded phase oscillation under
control.

3. Multiscale energies

Beginning this section through Section7, we will derive the equations that gov-
ern the multiscale energy evolutions. The whole formulation is principally based on
a time decomposition, but with an appropriate filtering in the horizontal dimensions.
It involves a definition of energies on different scale windows, a classification of dis-
tinct processes from the nonlinear convective terms, a derivation of time windowed
energetic equations, and a horizontal treatment of these equations with a space win-
dow reconstruction. In this section, we define the energies for the three time scale
windows.

3.1. Primitive equations and kinetic and available potential energies

The governing equations adopted in this study are:

∂v
∂t

= −∇ · (v v) − ∂(wv)

∂z
− fk ∧ v − 1

ρ0
∇P + Fmz + Fmh, (13)

0 = ∇ · v + ∂w

∂z
, (14)

0 = −∂P

∂z
− ρg, (15)

∂ρ

∂t
= −∇ · (vρ) − ∂(wρ)

∂z
+ N2ρ0

g
w+ Fρz + Fρh, (16)

wherev = (u, v) is the horizontal velocity vector,∇ = i ∂
∂x

+ j ∂
∂y

the horizontal gradient

operator,N = (− g
ρ0

∂ρ̄
∂z

)
1/2

the buoyancy frequency (ρ̄ = ρ̄(z) is the stationary density pro-
file), ρ the density perturbation with̄ρ excluded, andP the dynamic pressure. All the other
notations are conventional. The friction and diffusion terms are just symbolically expressed.
The treatment of these subgrid processes in a multiscale setting is not considered in this
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paper. From Eqs.(13) and (14), it is easy to obtain the equations that govern the evolution

of two quadratic quantities:K = 1
2v · v, andA = 1

2
g2

ρ2
0N

2ρ
2 (seeSpall, 1989). These are

the total kinetic energy (KE) and available potential energy (APE), given the location in
space and time. The essence of this study is to investigate how KE and APE are distributed
simultaneously in the physical and phase spaces.

3.2. Multiscale energies

Multiscale window transforms equipped with the marginalization property(11) allow
a simple representation of energy for each scale window� = 0,1,2. For a scalar field

S(t) ∈ V�,j2, letE�∗
n = (Ŝ∼�

n )
2
. By (11),

MnE
�∗
n =

∫ 1

0
[S∼�(t)]2 dt, (17)

which is essentially the energy ofSon window� (up to some constant factor) integrated
with respect tot over [0,1). RecallMn is a special sum over the 2j2 discrete equi-distance
locationsn = 0,1, . . . ,2j2 − 1. E�∗

n thus can be viewed as the energy on window�
summed over a small interval of length+t = 2−j2 around locationt = 2−j2n. An energy
variable for window� at time 2−j2n consistent with the fields at that location is therefore
a locally averaged quantity

E�
n = 1

+t
E�∗
n = 2j2 · (Ŝ∼�

n )
2
, (18)

for all � = 0,1,2. It is easy to establish that

Mn(E0
n + E1

n + E2
n)+t =

∫ 1

0
S2(t) dt. (19)

This is to say, the energy thus defined is conserved.
In the same spirit, the multiscale kinetic and available potential energies now can be

defined as follows:

K�
n = 1

2
[2j2(û∼�

n )2 + 2j2(v̂∼�
n )2] = 2j2

[
1

2
v̂∼�
n · 1

2
v̂∼�
n

]
(20)

A�
n = 2j2

[
1

2

g2

ρ2
0N

2
ρ̂∼�
n · ρ̂∼�

n

]
= 2j2

[
1

2
cρ̂∼�

n ρ̂∼�
n

]
, (21)

where the shorthandc ≡ g2/(ρ2
0N

2) is introduced to avoid otherwise cumbersome deriva-
tion of the potential energy equation. (Notec is z-dependent.) The purpose of the following
sections are to derive the evolution laws forK�

n andA�
n . Note the factor 2j2, which is a

constant once a signal is given, provides no information essential to our dynamics analysis.
In the MS-EVA derivation, we will drop it in order to avoid otherwise awkward expres-
sions. Therefore,all the energetic terms hereafter, unless otherwise indicated, should be
multiplied by2j2 before physically interpreted.
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4. Perfect transfer and transfer–transport separation

The MS-EVA is principally developed for time, but with a horizontal treatment for
spatial oscillations. Localized energetic study with a time decomposition (and the statistical
formulation) raises an issue: the separation of transport from the nonlinear term-related
energetics. Here by transport we mean a process which can be represented by some quantity
in a form of divergence. It vanishes if integrated over a closed domain. The separation of
transport is very important, since it allows the cross-scale energy transfer to come upfront.

Transfer–transport separation is not a problem in a space decomposition-based energetic
formulation, e.g., the Fourier formulation. In that case the analysis over the space has already
eliminated the transport, and as a result, the summation of the triad interaction terms over all
the possible scales vanishes. This problem surfaces in a localized time-based formulation
when uniqueness is concerned. In this section, we will show how it is resolved.

We begin by introducing a concept,perfect transfer process, for our purpose. The so-
calledperfect transferis a family of multiscale energetic terms which vanish upon sum-
mation over all the scale windows and marginalization over the sampled time locations. A
perfect transfer process, or simply perfect transfer when no confusion arises in the context,
is then a process represented by perfect transfer term(s). Perfect transfers move energy from
window to window without destroying or generating energy as a whole. They represent a
kind of redistribution process among multiple scale windows. In terms of physical signifi-
cance, the concept of perfect transfer is a natural choice. We are thence motivated to seek
through a larger class of “transfer processes” for perfect transfers, which set a constraint
for transport–transfer separation and hence help to solve the above uniqueness problem.

For a detailed derivation of the transport–transfer separation, refer toLiang et al. (2005).
Briefly cited here is the result with some modification to the needs in our context. The idea
is that, for an incompressible fluid flow, we can have the nonlinear-term related energetics
separated into a transport plus a perfect transfer, and the separation is unique. For simplicity,
consider a scalar fieldS = S(t, x, y). Suppose it is simply advected by an incompressible
2D flow v, i.e., the evolution is governed by

∂S

∂t
= −∇ · (vS), ∇ · v = 0. (22)

Let E�
n = 1

2(Ŝ∼�
n )

2
be its energy (variance) at time locationn on scale window�. The

evolution ofE�
n can be easily obtained by making a transform of the equation followed by

a product withŜ∼�
n . We are tasked to separate the resulting triple product term

NL = −Ŝ∼�
n ∇ · (v̂S)

∼�

n

as needed. By L02, this is done by performing the separation as

NL = −∇ ·Q
S�n

+ [−Ŝ∼�
n ∇ · (v̂S)

∼�

n + ∇ · Q
S�n

] ≡ +hQS�n
+ TS�n , (23)

where

Q
S�n

= λcŜ
∼�
n (v̂S)

∼�

n , λc = 1
2, (24)
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and

+hQS�n
≡ −∇ ·Q

S�n
(25)

TS�n ≡ −Ŝ∼�
n ∇ · (v̂S)

∼�

n + ∇ · Q
S�n
. (26)

It is easy to verify that∑
�

MnTS�n = 0, (27)

which implies thatTS�n represents a perfect transfer process.
Eq. (23) is the transport–transfer separation for the scalar variance evolution in a 2D

flow. For the 3D case, the separation is in the same form. One just needs to change the
vectors and the gradient operator in(23) into their corresponding 3D counterparts.

5. Multiscale kinetic energy equation

The formulation of multiscale energetics generally follows from the derivation for the
evolutions ofK andA. The difference lies in that here we consider our problem in the
phase space. Since the basis functionφ�,j, for any 0≤ j ≤ j2, is time dependent, and the
derivative ofφ�,j does not in general form an orthogonal pair withφ�,j itself, the local time
change terms in the primitive equations need to be pre-treated specially before the energy
equations can be formulated. Similar problems also exist inHarrison and Robinson (1978)’s
formalism. Appearing on the left hand side of their kinetic energy equation isv̄ · ∂v̄

∂t
, not in

a form of time change of12 v̄ · v̄.
To start, first consider∂v/∂t. Recall that our objective is to develop a diagnostic tool

for an existing dataset. Thus every differential term has to be replaced eventually by its
difference counterpart. That is to say, we actually do not need to deal with∂v/∂t itself.
Rather, it is the discretized form (space-dependence suppressed for clarity)

v(t ++t) − v(t −+t)

2+t
≡ δtv

that we should pay attention to (+t is the time step size). Viewed as functions oft, v(t ++t)
andv(t −+t) make two different series and may be transformed separately. Let∫ �

0
v∼�(t ++t)φ�,j2

n (t) dt ≡ v̂∼�
n+ , (28)∫ �

0
v∼�(t −+t)φ�,j2

n (t) dt ≡ v̂∼�
n− , (29)

where� is the periodicity of extension (� = 1 and 2 for extensions by periodization and
refection, respectively), and define an operatorδ̂n such that

δ̂nv̂∼�
n = v̂∼�

n+ − v̂∼�
n−

2+t
. (30)
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δ̂nv̂∼�
n is actually the transform ofδtv, or the rate of change of̂v∼�

n on its corresponding
scale window. Similarly, define difference operators of the second order as follows:

δ2
t2
v ≡ v(t ++t) − 2v(t) + v(t −+t)

(+t)2
, (31)

δ̂2
n2v̂

∼�
n ≡

∫ �

0
δ2
t2
v∼� φ�,j2

n (t) dt. (32)

Now take the dot product of̂v∼�
n with δ̂nv̂∼�

n ,

v̂∼�
n · δ̂nv̂∼�

n =
(

− v̂∼�
n+ − 2v̂∼�

n + v̂∼�
n−

2
+ v̂∼�

n+ + v̂∼�
n−

2

)
· v̂

∼�
n+ − v̂∼�

n−
2+t

= 1

2+t

(
1

2
v̂∼�
n+ · v̂∼�

n+ − 1

2
v̂∼�
n− · v̂∼�

n−

)
− (+t)2(δ̂2

n2v̂
∼�
n · δ̂nv̂∼�

n )

= δ̂nK
�
n − (+t)2(δ̂2

n2v̂
∼�
n · δ̂nv̂∼�

n ), (33)

where

K�
n = 1

2 v̂
∼�
n · v̂∼�

n (34)

is the kinetic energy at locationn (in the phase space) for the window� (the factor 2j2

omitted). Note thatK�
n is different fromK̂∼�

n . The latter is the multiscale window transform
of K, not a concept of “energy”. Another quantity that might be confused withK�

n isK∼� ,
or the fieldK reconstructed on window�. K∼� is a property in physical space. It is
conceptually different from the phase space-basedK�

n for velocity.
Observe that the first term on the right hand side of Eq.(33) is the time change (in

difference form) of the kinetic energy on window� at time 2−j2n (scaled by the series
length). The second term, which is proportional to (+t)2, is in general very small (of
orderO[(+t)2] compared tôδnK�

n ). As shown inAppendix A, it could be significant only
when processes with scales of grid size are concerned. Besides, it is expressed in a form
of discretized Laplacian. We may thereby view it indistinguishably as a kind of subgrid
parameterization and merge it into the dissipation terms. The termv̂∼�

n · δ̂nv̂∼�
n , which is

akin to Harrison and Robinson’s̄v · ∂v̄
∂t

, is thus merely the change rate ofK�
n , with a small

correction of order (+t)2 (t scaled by the series duration).
Terms other than∂tv and∂tρ in a 3D primitive equation system do not have time deriva-

tives involved. Multiscale window transforms can be applied directly to every field variable
in spite of the spatial gradient operators, if any. To continue the derivation, first take a
multiscale window transform of(14),

∂ŵ∼�
n

∂z
+ ∇ · v̂∼�

n = 0. (35)

Dot product of the momentum equation reconstructed from(13) on window � with
v̂∼�
n φ

�,j2
n (t), followed by an integration with respect tot over the domain [0,�), gives

the kinetic energy equation for window�. We are now to arrange the right hand side of
this equation into a sum of some physically meaningful terms.

yangyang
高亮
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Look at the pressure work first. By Eq.(35), it is∫ �

0
−v̂∼�

n · ∇P∼�

ρ0
φ�,j2
n (t) dt

= −v̂∼�
n · ∇P̂∼�

n

ρ0
= − 1

ρ0

[
∇ · (P̂∼�

n v̂∼�
n ) + ∂

∂z
(P̂∼�

n ŵ∼�
n )

]
+ ŵ∼�

n

∂P̂∼�
n

∂z

= − 1

ρ0

[
∇ · (P̂∼�

n v̂∼�
n ) + ∂

∂z
(P̂∼�

n ŵ∼�
n )

]
− g

ρ0
ŵ∼�
n ρ̂∼�

n

≡ +hQP�
n

++zQP�
n

− b�n , (36)

where+hQP�
n

and+zQP�
n

(QP the pressure flux) are respectively the horizontal and
vertical pressure working rates (Q stands for flux, a convention in many fluid mechan-
ics textbooks). The third term,−b�n = − g

ρ0
ŵ∼�
n ρ̂∼�

n , is the rate of buoyancy conversion
between the kinetic and available potential energies on window�.

Next look at the friction termsFmz andFmh in Eq. (13). They stand for the effect of
unresolved sub-grid processes. An explicit expression of them is problem-specific, and is
beyond of scope of this paper. We will simply write these two terms asFK�,z andFK�,h,
which are related to theFmz andFmh in Eq.(13)as follows:

FK�
n ,z

= v̂∼�
n · (F̂mz)

∼�
n , (37)

FK�
n ,h

= v̂∼�
n · (F̂mh)∼�

n + (+t)2(δ̂2
n2v̂

∼�
n · δ̂nv̂∼�

n ). (38)

In the above, the correction toδ̂nK�
n in (33)has been included, as it behaves like a kind of

horizontal dissipation.
For the remaining part, the Coriolis force does not contribute to increaseK�

n . The
nonlinear terms are what we need to pay attention. Specifically, we need to separate

NL = −v̂∼�
n · ∇ · (v̂ v)∼�

n − v̂∼�
n · ∂

∂z
(ŵv)∼�

n

into two classes of energetics which represent transport and transfer processes, respectively.
This can be achieved by performing a decomposition as we did in Section4 for the 3D case,
with the field variableS in (23) replaced byu andv, respectively. Let

Q
h

= λcv̂∼�
n · (v̂ v)∼�

n = λcv̂∼�
n · (v̂ v)∼�

n , (39)

Qz = λcv̂∼�
n · (ŵv)∼�

n , (40)

whereλc = 1
2. Further define

+hQK�
n

= −∇ ·Q
h
, (41)

+zQK�
n

= −∂Qz

∂z
, (42)
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T ∗
K�
n ,h

= −v̂∼�
n · ∇ · (v̂ v)∼�

n + ∇ · Q
h
, (43)

T ∗
K�
n ,z

= −v̂∼�
n · ∂

∂z
(ŵv)∼�

n + ∂Qz

∂z
. (44)

Then it is easy to show that

NL = (+hQK�
n

++zQK�
n

) + (T ∗
K�
n ,h

+ T ∗
K�
n ,z

) (45)

is the transport–transfer separation for which we are seeking, with

T ∗
K�
n ,h

+ T ∗
K�
n ,z

= 1

2

[−v̂∼�
n · ∇ · (v̂ v)∼�

n + ∇v̂∼�
n : (v̂ v)∼�

n

− ∂

∂z
(ŵv)∼�

n · v̂∼�
n + ∂v

∂z
· (ŵv)∼�

n

]
(46)

the perfect transfer.
In (45), although (T ∗

K�
n ,h

+ T ∗
K�
n ,z

) as a whole is perfect,T ∗
K�
n ,h

or T ∗
K�
n ,z

alone is not. In
order to make them so, introduce the following terms:

TK�
n ,h

= T ∗
K�
n ,h

− K̂∼�
n ∇ · v̂∼�

n , (47)

TK�
n ,z

= T ∗
K�
n ,z

− K̂∼�
n

∂ŵ∼�
n

∂z
, (48)

whereK̂∼�
n is the multiscale window transform ofK = 1

2v · v as a field variable (not
K�
n , the kinetic energy on window�). Clearly (T ∗

K�
n ,h

+ T ∗
K�
n ,z

) = (TK�
n ,h

+ TK�
n ,z

) by
the continuity Eq.(35). It is easy to verify that bothTK�

n ,h
andTK�

n ,z
are perfect transfers

using the marginalization property. Decomposition(45)now becomes

NL = (+hQK�
n

++zQK�
n

) + (TK�
n ,h

+ TK�
n ,z

). (49)

In summary, the kinetic energy evolution on window� is governed by

δ̂nK
�
n = −∇ · Q

h
− ∂Qz

∂z
+ [−v̂∼�

n · ∇ · (v̂ v)∼�
n + ∇ · Q

h
− K̂∼�

n ∇ · v̂∼�
n ]

+
[
−v̂∼�

n · ∂

∂z
(ŵv)∼�

n + ∂Qz

∂z
− K̂∼�

n

∂ŵ∼�
n

∂z

]
− ∇ ·

(
v̂∼�
n

P̂∼�
n

ρ0

)
− ∂

∂z

(
ŵ∼�
n

P̂∼�
n

ρ0

)
− g

ρ0
ŵ∼�
n ρ̂∼�

n + FK�
n ,z

+ FK�
n ,h

, (50)

whereQ
h

andQz are defined in(39)and(40). Symbolically this is,

K̇�
n = +hQK�

n
++zQK�

n
+ TK�

n ,h
+ TK�

n ,z
++hQP�

n
++zQP�

n

− b�n + +FK�
n ,z

+ FK�
n ,h

. (51)

In Appendix Da list of these symbols and their meanings is presented.
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6. Multiscale available potential energy equation

To arrive at the multiscale available potential energy equation, take the scale win-
dow transform of the time-discretized version of Eq.(16) and multiply it by cρ̂∼�

n

(c ≡ g2/(ρ2
0N

2)). The left hand side becomes, as before,

cρ̂∼�
n (δ̂tρ)∼�

n = cρ̂∼�
n δ̂nρ̂

∼�
n = δ̂nA

�
n − (+t)2c(δ̂2

n2ρ̂
∼�
n · δ̂nρ̂∼�

n ),

where

A�
n = 1

2
c(ρ̂∼�

n )2 = 1

2

g2

ρ2
0N

2
(ρ̂∼�

n )2 (52)

(constant multiplier 2j2 omitted) is the available potential energy at locationn in the phase
space (corresponding to the scaled time 2−j2n) for the window�. Compared tôδnA�

n , the
correction is of order (+t)2, and could be significant only at small scales, as argued for the
kinetic energy case.

For the advection-related terms, the transform followed by a multiplication withcρ̂∼�
n

yields

(AD) = cρ̂0
n

∫ �

0

(
−∇ · (vρ)∼� − ∂(wρ)∼�

∂z

)
φ�,j2
n (t) dt

= −cρ̂∼�
n ∇ · (v̂ρ)∼�

n − cρ̂∼�
n

∂

∂z
(ŵρ)∼�

n .

As has been explained in Section4, we need to collect flux-like terms. In the phase space,
these terms are:

+hQA�
n

≡ −∇ · [λccρ̂
∼�
n (v̂ρ)∼�

n ], (53)

+zQA�
n

≡ − ∂

∂z
[λccρ̂

∼�
n (ŵρ)∼�

n ], (54)

whereλc = 1
2. With this flux representation, (AD) is decomposed as

(AD) = +hQA�
n

++zQA�
n

− [cρ̂∼�
n ∇ · (v̂ρ)∼�

n ++hQA�
n

]

−
[
cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n ++zQA�
n

]
.

The two brackets as a whole represent a perfect transfer process. However, neither of them
alone does so. For physical clarity, we need to make some manipulation.

Making use of Eq.(35), and denoting

TSA�
n

≡ λcρ̂
∼�
n (ŵρ)∼�

n

∂c

∂z
, (55)
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the above decomposition can be written as

(AD) = +hQA�
n

++zQA�
n

− [cρ̂∼�
n ∇ · (v̂ρ)∼�

n ++hQA�
n

− λcc((ρ̂2)∼�
n ∇ · v̂∼�

n )]

−
[
cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n ++zQA�
n

+ TSA�
n

− λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)]
+ TSA�

n

≡ +hQA�
n

++zQA�
n

+ TA�
n ,∂hρ

+ TA�
n ,∂zρ

+ TSA�
n
, (56)

where+hQA�
n

and+zQA�
n

are, as we already know, the horizontal and vertical transports.
The other pair,

TA�
n ,∂hρ

≡ −cρ̂∼�
n ∇ · (v̂ρ)∼�

n −+hQA�
n

+ λcc((ρ̂2)∼�
n ∇ · v̂∼�

n ) (57)

TA�
n ,∂zρ

≡ −cρ̂∼�
n

∂

∂z
(ŵρ)∼�

n −+zQA�
n

− TSA�
n

+ λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)
(58)

represent two perfect transfer processes, as can be easily verified with the definition in
Section4.

If necessary,+hQA�
n

andTA�
n ,∂hρ

can be further decomposed as

+hQA�
n

= +xQA�
n

++yQA�
n
, (59)

TA�
n ,∂hρ

= TA�
n ,∂xρ

+ TA�
n ,∂yρ

, (60)

where+xQA�
n

(TA�
n ,∂xρ

) and+yQA�
n

(TA�
n ,∂yρ

) are given by the equation for+hQA�
n

(TA�
n ,∂hρ

) with the gradient operator∇ replaced by∂/∂x and∂/∂y, respectively.
Besides the above fluxes and transfers, there exists an extra term

TSA�
n

≡ λcρ̂
∼�
n (ŵρ)∼�

n

∂c

∂z
= −λccρ̂

∼�
n (ŵρ)∼�

n

∂(logN2)

∂z
(61)

in the (AD) decomposition (recallc = g2/ρ2
0N

2). This term represents an appar-
ent source/sink due to the stationary vertical shear of density, as well as an energy
transfer.

Next consider the termwN2ρ0
g

. Recall thatN2 is a function ofzonly. It is thus immune
to the transform. So

cρ̂∼�
n

ρ0

g
· (ŵN2)∼�

n = c
N2ρ0

g
ρ̂∼�
n ŵ∼�

n = g

ρ0
ŵ∼�
n ρ̂∼�

n = b�n , (62)

which is exactly the buoyancy conversion between available potential and kinetic energies
on window�.

The diffusion terms are treated the same way as before, they are merely denoted as

FA�
n ,z

= cρ̂∼�
n (F̂ρ,z)

∼�

n , (63)

FA�
n ,h

= cρ̂∼�
n (F̂ρ,h)∼�

n + (+t)2c(δ̂2
n2ρ̂

∼�
n · δ̂nρ̂∼�

n ). (64)

Put all the above equations together (with the aid of notations(53), (54) and (61)),

δ̂nA
�
n = +hQA�

n
++zQA�

n

+ [−cρ̂∼�
n ∇ · (v̂ρ)∼�

n −+hQA�
n

+ λcc((ρ̂2)
∼�

n ∇ · v̂∼�
n )]



X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans 38 (2005) 195–230211

+
[
−cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n −+zQA�
n

− TSA�
n

+ λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)]
+ TSA�

n
+ g

ρ0
ŵ∼�
n ρ̂∼�

n + FA�
n ,z

+ FA�
n ,h

, (65)

or, in a symbolic form,

Ȧ�
n = +hQA�

n
++zQA�

n
+ TA�

n ,∂hρ
+ TA�

n ,∂zρ
+ TSA�

n
+ b�n + FA�

n ,z
+ FA�

n ,h
.

(66)

For a list of the meanings of these symbols, refer toAppendix D.

7. Horizontal treatment

As in Fourier analysis, the transform coefficients of MWT contain phase information;
unlike Fourier analysis, the energies defined in Section3.2, which are essentially the trans-
form coefficients squared, still contain phase information. This is fundamentally the same
as what happens with the real-valued wavelet analysis, which has been well studied in the
context of fluid dynamics (e.g.,Farge, 1992; Iima and Toh, 1995).

In the presence of advection, the phase information problem leads to superimposed
oscillations with high wavenumbers on the spatial distribution of obtained energetics. This
may be understood easily, following an argument in the wavelet energetic analysis of shock
waves byIima and Toh (1995). While in the sampling space3 the phase oscillation might not
be obvious or even ignored because of the discrete nature in time, in the spatial directions
it surfaces through a Galilean transformation. Look at the transform(7). The characteristic
frequency isfc ∼ 2j2 cycles over the time duration. (Recall the signals are equally sampled
on 2j2 points in time.) Now suppose there is a flow with constant speedu0. The oscillation
in time withfc is then transformed to the horizontal plane with a wavelength on the order
of u0/fc. Suppose the sampling interval is+t, the time step size for the dataset. Suppose
further the spatial grid size is+x. In a numerical scheme explicit in advection (which is true
for most numerical models), it must be smaller than or equal to+x/u0 to satisfy the CFL
condition. So the oscillation has a wavenumberkc ∼ O( 1

+x
) or larger, asfc ∼ 1

+t
. Fig. 2a

shows a typical example of the energetic term for the Iceland-Faeroe Frontal variability (cf.
Robinson et al., 1996a,b; LR3). Notice how the substantial energetic information (Fig. 2b)
is buried in the oscillations with short wavelengths. (The time sampling interval is 10+t

here.)
The phase oscillation as inFig. 2a is a technique problem deeply rooted in the nature of

localized transforms. It must be eliminated to keep the energetic terms from being blurred. In
our case, this is easy to be done. As the characteristic frequency is always 2j2, the highest for
the signal under concern, the oscillation energy peaks at very high wavenumbers, far away
from the substantial energy on the spectrum. Except for energetics on the sub-mesoscale

3 Given a scale window, the MWT transform coefficients form a complete function space. We here refer to it as
a sampling space.
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Fig. 2. (a) The total transfer of APE from the large-scale window to the meso-scale window for the Iceland-Faeroe
Frontal variability at depth 300 m on August 21, 1993 (cf. LR3, andRobinson et al., 1996a,b). (b) The horizontally
filtered map (units: m2s−3).

window, a horizontal scaling synthesis with a proper upper scale level (lower enough to
avoid the phase problem but higher enough to encompass all the substantial information)
will give us all what we want. As a scaling synthesis is in fact a low-pass filtering which
may also be loosely understood as a “local averaging”, we are taking a measure essentially
similar to the time averaging approach ofIima and Toh (1995), except that we are here
dealing with the horizontal rather than temporal direction.From now on, all the energetics
should be understood to be“ locally averaged” with appropriate spatial window bounds,
though for notational laconism, we will keep writing them in their original forms.

One thing that should be pointed out regarding the MWT is that the phase information
to be removed is always located around the highest wavenumbers on the energy spectrum.
The reason is that in Eq.(7)a scaling basis at the highest scale levelj2 is used for transforms
on all windows. This is in contrast to wavelet analyses, in which the larger the scale for
the transform, the larger the scale for the phase oscillation (seeIima and Toh, 1995). The
special structure of the MWT transform spectrum is very beneficial to the phase removal.
Generally no aliasing will happen in separating the substantial processes from the phase
oscillation.

8. Connection to the classical formalism

The MS-EVA can be easily connected to a classical energetics formalism, with the aid of
the MWT properties presented in Section2.3, particularly the property of marginalization.
For kinetic energy,Appendix Cshows that, when

(1) j0 = 0, j1 = j2 (i.e., onlytwo-scale windowsare considered), and
(2) aperiodic extension(� = 1) is employed,

Eq.(50)for� = 0 and� = 1 are reduced respectively to the mean and eddy kinetic energy
equations inHarrison and Robinson (1978)’s Reynolds-type energetics adapted for open
ocean problems [see Eqs.(A.28) and (A.33)]. For available potential energy, the classical
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formulation (2D only) in a statistical context gives the following mean and eddy equations
(e.g.,Tennekes and Lumley, 1972)

∂Amean

∂t
+ ∇ · (v̄Amean) = −cρ̄∇ · v′ρ′, (67)

∂Aeddy

∂t
+ ∇ ·

(
v

1

2
cρ′2

)
= −cρ′v′ · ∇ρ̄, (68)

whereAmean= 1
2cρ̄

2, Aeddy = 1
2c(ρ)′2. Eqs.(67) and (68)can be adapted for open ocean

problems by modifying the time rates of change using the approach byHarrison and Robin-
son (1978). Following the same way as that for KE, these modified equations can be derived
directly from the MS-EVA APE Eq.(65)under the above two assumptions.

It is of interest to notice that the multiscale energy Eqs.(50) and (65)appear in the same
form for different windows. This is in contrast to the classical Reynolds-type formalism,
where the eddy energetics are usually quite different in form from their mean counterparts.
This difference disappears if the averaging and deviating operators in(67), (68), (A.28), and
(A.33), are rewritten in terms of multiscale window transform. One might have been using
the averaging-deviating approach for years without realizing that they actually belong to a
kind of transform and synthesis.

Consequently, the classical energetic formalism is equivalent to our MS-EVA under a
two-window decomposition withj0 = 0 and� = 1. The latter can be viewed as a gen-
eralization of the former for GFD processes occurring on arbitrary scale windows. The
MS-EVA capabilities, however, are not limited to this. In(67) and (68), the rhs terms, or
transfers as usually interpreted, sum to−c∇ · (ρ̄ρ′v′), which is generally not zero. That is
to say, these “transfers” are not “perfect”. They still contain some information of transport
processes. Our MS-EVA, in contrast, produces transfers on a different basis. The concept of
perfect transfer defined through transfer–transport separation allows us to make physically
consistent inference of the energy redistribution through scale windows. In this sense, the
MS-EVA has an aspect which is distinctly different from the classical formalism.

9. Interaction analysis

Different from the classical energetics, a localized energy transfer involves not only
interactions between scales, but also interactions between locations in the sampling space.
We have already seen this in the definition of perfect transfer processes. A schematic is
shown inFig. 3. The addition of sampling space interaction compounds greatly the transfer
problem, as it mingles the inter-scale interactions with transfers within the same scale
window, and as a result, useful information tends to be disguised, especially for those
processes such as instabilities. We must single out this part in order to have the substantial
dynamics up front.

In the MS-EVA, transfer terms are expressed in the form of triple products. They are all
like

T (�,n) = R̂∼�

n (p̂q)∼�
n , forR, p, q ∈ V�,j2, (69)
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Fig. 3. A schematic of the energy transfers toward a meso-scale process at locationn. Depicted are the transfers
from different time scales at the same location (vertical arrows), transfers from surrounding locations at the same
scale level (horizontal arrows), and transfers from different scales at different locations (dashed arrows).

a form which we callbasic transfer functionfor reference convenience. Using the repre-
sentation(9), it may be expanded as

T (�,n) =
∑
�1,�2

∑
n1,n2

Tr(n,�|n1,�1; n2,�2), (70)

where

Tr(n,�|n1,�1; n2,�2) = R̂∼�

n · [p̂∼�1
n1

q̂∼�2
n2

(
̂

φ
�,j2
n1 φ

�,j2
n2 )∼�

n ], (71)

and the sums are over all the possible windows and locations.Tr(n,�|n1,�1; n2,�2) is a
unit expressionof the interaction amongst the triad (n,w; n1, w1; n2, w2). It stands for the
rate of energy transferred to (n,�) from the interaction of (n1,�1) and (n2,�2). We will
refer to the pairs (n1, w1) and (n2, w2) as thegiving modes, and (n,w) thereceiving mode,
a naming convention afterIima and Toh (1995).

Theoretically, expansion of a basic transfer function in terms of unit expression allows one
to trace back to all the sources that contributes to the transfer. Practically, however, it is not an
efficient way because of the huge number of mode combinations and hence the huge number
of triads. In our problem, such a detailed analysis is not at all necessary. If(70) is modified
such that some terms are combined, the computational redundancy would be greatly reduced
whereas the physical interpretation could be even clearer. We now present the modification.

Look at the meso-scale window (� = 1) first. It is of particular importance because it
mediates between the large scales and sub-mesoscales on a spectrum. For a fieldp, make
the decomposition

p = p̂∼1
n φ�,j2

n (t) + p∗1 = p∼0 + p̂∼1
n φ�,j2

n (t) + p∼1
∗1 + p∼2, (72)

where

p∗1 = p− p̂∼1
n φ�,j2

n (t) (73)
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andp∼1
∗1 is the meso-scale part ofp∗1,

p∼1
∗1 = p∼1 − p̂∼1

n φ�,j2
n =

∑
i∈Nj2

� ,i �=n

p̂∼1
i φ

�,j2
i . (74)

The new interaction analysis concerns the relationship between scales and locations, instead
of between triads. The advantage of this is that we do not have to resort to those triad
modes, which may not have physical correspondence in the large-scale window, to make
interpretation. Note not any ˆp∼1

n φ
�,j2
n can convincingly characterizep∼1(t) at locationn. But

in this context, as the basis functionφ�,j2
n (t) we choose is a very localized one (localization

order delimited, see L02), we expect the removal of ˆp∼1
n φ

�,j2
n will effectively (though not

totally) eliminate fromp∼1 the contribution from locationn. This has been evidenced in the
example of of a meridional velocity seriesv (Fig. 4), where atn = 384,v∼1

∗1 is only about 6%

(|−0.0106
0.17 |) of thev∼1 in magnitude, while at other locationsv andv∼1

∗1 are almost the same
(fluctuations negligible aroundn). Therefore, one may practically, albeit not perfectly, take
p̂∼1
n φ

�,j2
n as the meso-scale part ofpwith contribution from locationnonly (corresponding to

t = 2−j2n), andp∼1
∗1 the part from all locations other thann. Notep∼1

∗1 has ann-dependence.
For notational clarity, it is suppressed henceforth.

Likewise, for fieldq ∈ V�,j2, it can also be decomposed as

q = q∼0 + q∼1 + q∼2 (75)

q = q∼0 + q̂∼1
n φ�,j2

n + q∼1
∗1 + q∼2, (76)

with interpretation analogous to that ofp∼1
∗1 for the starred term. The decompositions for

p andq yield an analysis of the basic transfer functionT (1, n) = R̂∼1
n · (p̂q)∼1

n into an
interaction matrix, which is shown inTable 1. In this matrix, L stands for large-scale
window and S for sub-mesoscale window (all locations). Mn is used to denote the meso-
scale contribution from locationn, while M∗ signifies the meso-scale contributionsother
than that location. Among these interactions, Mn–M∗ and M∗–M∗ contribute toT (1, n)
from the same scale window (meso-scale, without inter-scale transfers being involved. We
may sub-total all the resulting 16 terms into 5 more meaningful terms:

T 0→1
n = R̂∼1

n · [(p̂∼0q∼0)∼1
n + q̂∼1

n (
̂

p∼0φ
�,j2
n )∼1

n + (p̂∼0q∼1
∗1 )∼1

n

+ p̂∼1
n (

̂
φ
�,j2
n q∼0)∼1

n + (p̂∼1q∼0)∼1
n ]

= R̂∼1
n · [(p̂∼0q∼0)∼1

n + (p̂∼1q∼0)∼1
n + (p̂∼0q∼1)∼1

n ] (77)

T 2→1
n = R̂∼1

n · [p̂∼1
n (

̂
φ
�,j2
n q∼2)∼1

n + (p̂∼1
∗1 q

∼2)∼1
n + q̂∼1

n (
̂

p∼2φ
�,j2
n )∼1

n

+ (p̂∼2q∼1
∗1 )∼1

n + (p̂∼2q∼2)∼1
n ]

= R̂∼1
n · [(p̂∼1q∼2)∼1

n + (p̂∼2q∼2)∼1
n + (p̂∼2q∼1)∼1

n ] (78)
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Fig. 4. A typical time series ofv (in cm/s) from the Iceland-Faeroe Frontal variability simulation (point (35, 43,
2). Refer toFig. 2 for the location) and its derived series (cf. LR3). There are 2j2 = 1024 data points, and scale
windows are chosen such thatj0 = 0 andj1 = 4. The original seriesv and its large-scale reconstructionv∼0 are
shown in (a), and the meso-scale and sub-mesoscale are plotted in (b) and (c) respectively. Also plotted in (b) is
the “starred” series (dotted)v∼1

∗1 for locationn = 384. (d) is the close-up of (b) aroundn = 384. Apparently,v∼1
∗1

is at least one order smaller thanv∼1 in size at that point, while these two are practically the same at other points.
Locationn corresponds to a scaled timet = 2−j2n (here forecast day 8).

T 0⊕2→1
n = R̂∼1

n · [(p̂∼2q∼0)∼1
n + (p̂∼0q∼2)∼1

n ] (79)

T 1→1
n→n = R̂∼1

n ·
[
p̂∼1
n q̂∼1

n (φ̂�,j2
n )2

∼1

n

]
(80)

T 1→1
other→n = R̂∼1

n · [(p̂∼1q∼2
∗1 )∼1

n + q̂∼1
n (

̂
p∼2

∗1 φ
�,j2
n )∼1

n ]. (81)

Table 1
Interaction matrix for basic transfer functionT (1, n) = R̂∼1

n · (p̂q)∼1
n

p∼0 p̂∼1
n φ

�,j2
n p∼1

∗1 p∼2

q∼0 L–L L–Mn L–M∗ L–S
q̂∼1
n φ

�,j2
n Mn–L Mn–Mn Mn–M∗ Mn–S

q∼1
∗1 M∗–L M∗–Mn M∗–M∗ M∗–S
q∼2 S–L S–Mn S–M∗ S–S
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If necessary,T 1→1
n→n andT 1→1

other→n may also be combined to one term. The result is denoted
asT 1→1

n .
The physical interpretations of above five terms are embedded in the naming convention

of the superscripts, which reveals how energy is transferred to mode (1, n) from other scales.
Specifically,T 0→1

n andT 2→1
n are transfer rates from windows 0 and 1, respectively, and

T 0⊕2→1
n is the contribution from the window 0–window 2 interaction over the meso-scale

range. The last two terms,T 1→1
n→n andT 1→1

other→n, sum up toT 1→1
n , which represents the part

of transfer from the same window.
Above are the interaction analysis forT (1, n). Using the same technique, one can obtain

a similar analysis forT (0, n) andT (2, n). The results are supplied inAppendix B.
What merits mentioning is that different analyses may be obtained by making different

sub-grouping for Eq.(70). The rule of thumb here is to try to avoid those starred terms as
in Eq.(81), which makes the major overhead in computation (in terms of either memory or
CPU usage). In the above analyses, say the meso-scale analysis, if a whole perfect transfer
is calculated, the sum of those terms in the form ofT 1→1

n→n will vanish by the definition of
perfect transfer processes. This also implies that the sum of those transfer functions in the
form of T 1→1

other→n will be equal to the sum of terms in the same form but with all the stars
dropped. Hence in performing interaction analysis for a perfect transfer process, we may
simply ignore the stars for the corresponding terms. But if it is an arbitrary transfer term
which does not necessarily represent a perfect transfer process (e.g,TSA1

n
), the starred-term-

caused heavy computational overhead will still be a problem.
In practice, this overhead may be avoided under certain circumstances. Recall that we

have built a highly localized scaling basis functionφ. For anyp ∈ V�,j2, it yields a function

p(t)φ�,j2
n (t) with an effective support of the order of the grid size. The large- or meso-

scale transform of this function is thence negligible, shouldj1 be smaller thanj2 by some
considerable number (3 is enough). Only when it is in the sub-mesoscale window need
we really compute the starred term. An example with a typical time series ofρ andu is

plotted inFig. 5. Apparently, for the large-scale and meso-scale cases,ρ̂∼0
n (

̂
uφ

�,j2
n )∼0

n and

ρ̂∼1
n (

̂
uφ

�,j2
n )∼1

n (red circles) are very small and hence (̂ρ∼0∗0u)∼0
n and (̂ρ∼1

∗1 u)∼1
n can be

approximated by (̂ρ∼0u)∼0
n and (̂ρ∼1u)∼1

n , respectively. This approximation fails only in
the sub-mesoscale case, where the corresponding two parts are of the same order.

It is of interest to give an estimation of the relative importance of all these interaction
terms obtained thus far. For the mesoscale transfer functionT (1, n), T 0⊕2→1

n is generally
not significant (compared to other terms). This is because, on a spectrum, if two processes
are far away from each other (as is the case for large scale and sub-mesoscale), they are
usually separable and the interaction are accordingly very weak. Even if there exists some
interaction, the spawned new processes generally stay in their original windows, seldom
going into between. Apart fromT 0⊕2→1

n , all the others are of comparable sizes, though
more often than notT 0→1

n dominates the rest (e.g.,Fig. 6b).
For the large-scale window, things are a little different. This time it is termT 2→0

n that is
not significant, with the same reason as above. But termT 1⊕2→0

n is in general not negligible.
In this window, the dominant energy transfer is usually not from other scales, but from other
locations at the same scale level. Mathematically this is to say,T 0→0

other→n usually dominates
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Fig. 5. An example showing relative importance of the decomposed terms fromTA�
n ,∂hρ

. Data source: same as that

in Fig. 4(zonal velocity only). Units: kg/m2s. Left: (̂ρ∼0
∗0 u)∼0

n (heavy solid line) and̂ρ∼0
n (̂uφ�,j2

n )∼0
n (circle); middle:

(ρ̂∼1
∗1 u)∼1

n (heavy solid line) and̂ρ∼1
n (̂uφ�,j2

n )∼1
n (circle); right: (̂ρ∼1

∗2 u)∼2
n (heavy solid line) and̂ρ∼2

n (̂uφ�,j2
n )∼2

n

(circle). Obviously, the (̂ρ∼w
∗w u)∼w

n in the decomposition (̂ρ∼wu)∼w
n = (ρ̂∼w

∗w u)∼w
n + ρ̂∼w

n (̂uφ�,j2
n )∼w

n can be well

approximated by (̂ρ∼wu)∼w
n for windowsw = 0,1.

the other terms. This is understandable since a large-scale feature results from interactions
with modes covering a large range of location on the time series. If each location contributes
even a little bit, the grand total could be huge. This fact is seen in the example inFig. 6a.

By the same argument as above, within the sub-mesoscale window, the dominant term
isT 1→2

n . ButT 0⊕1→2
n could be of some importance also. In comparison to these two,T 0→2

n

andT 2→2
n = T 2→2

other→n + T 2→2
n→n are not significant.

Fig. 6. An example showing the relative importance of analytical terms ofTK�
n ,h at 10 (time) locations. The data

source and parameter choice are the same as that ofFig. 4. Here the constant factor 2j2 has been multiplied. (a)
Analysis ofT

K0
n,h

(thick solid):T 1→0
K0
n,h

(thick dashed),T 2→0
K0
n,h

(solid), andT 0→0
K0
n,h

(dashed).T 1⊕2→0
K0
n,h

is also shown but

unnoticeable. (b) Analysis ofTK1
n,h

(thick solid):T 0→1
K1
n,h

(thick dashed),T 2→1
K1
n,h

(solid), andT 1→1
K1
n,h

(dashed).T 0⊕2→1
K1
n,h

is also shown but unnoticeable.
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We finish up this section with two observations ofFig. 6. (1) During the forecast days,
TK0

n,h
and T 1→0

K0
n,h

are almost opposite in sign. That is to say, the transfer term without

interaction analysis could be misleading in inter-scale energy transfer study. (2) The transfer
rates change with time continuously. Analyses in a global time framework apparently do
not work here, as application of a global analysis basically eliminates the time structure.
This from one aspect demonstrates the advantage of MS-EVA in diagnosing real problems.

10. Process classification and energetic scenario

From the above analysis, energetic processes for a geophysical fluid system can be gen-
erally classified into the following four categories: transport, perfect transfer, buoyancy con-
version, and dissipation/diffusion. (The apparent source/sink in the multiscale APE equation
is usually orders smaller than other terms and hence is negligible.) Dissipation/diffusion is
beyond the scope of this paper. All the remaining categories belong to some “conservative”
processes. Transport vanishes if integrated over a closed domain; perfect transfer summa-
rizes to zero over scale windows followed by a marginalization in the sampling space;
buoyancy conversion serves as a protocol between the two types of energy.

The energetic scenario is now clear. If a system is viewed as defined in a space which
includes physical space, phase space, and the space of energy type, then transport, transfer
and buoyancy conversion are three mechanisms that redistribute energy through this super
space. In a two-window decomposition, communication between the windows are achieved
via T 0↔1

K andT 0↔1
A . (HereT stands for total transfer, and the superscript 0↔ 1 for either

0 → 1 or 1→ 0.) the two types of energy are converted on each window; while transport
brings every point to connection in the physical space. The whole scenario is like an energetic
cycle, which is pictorially presented in the left part ofFig. 7 (with all the sub-mesoscale
window-related arrows dropped), where arrows are utilized to indicate energy flows, and
box and discs for the KE and APE, respectively.

When the number of windows increase from 2 to 3, the scenario of energetic processes
becomes much more complex. Besides the addition of a sub-mesoscale window, and the
corresponding transports, conversions, and the window 1–2 and 0–2 transfers, another pro-
cess appears. Schematized inFig. 7by dashed arrows, it is a transfer to a window from the
interaction between another two windows. In traditional jargon, it is a “non-local” transfer,
i.e., a transfer between two windows which are not adjacent in the phase space. We do not
adopted this language as by “local” in this paper we refer to a physical space context. If the
number of windows increases, these “nonlocal” transfers will compound the problem very
much, and as a result, the complexity of the energetic scenario will increase exponentially.
In a sense, this is one of the reasons why an eddy decomposition is preferred to a wave
decomposition for multiscale energy study.

11. Multiscale enstrophy equation

Vorticity dynamics is an integral part of the MS-EVA. In this section we develop the
laws for multiscale enstrophy evolution, which are derived from the vorticity equation.
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Fig. 7. A schematic of the multiscale energetics for locationn. Arrows are used to indicate the energy flow, both
in the physical space and phase space, and labeled over these arrows are the processes associated with the flow.
The symbols adopted are the same as those listed inTable A.2, except that transport and transfer are the total
processes. Interaction analyses are indicated in the superscripts of theT-terms, whose interpretation is referred to
Section9. For clarity, transfers from the same window are not shown. From this diagram, we see that transports
(+QK�

n
, +QP�

n
, +QA�

n
, for windows� = 0,1,2) occur between different locations in physical space, while

transfers (theT-terms) mediate between scale windows in phase space. The connection between the two types of
energy is established through buoyancy conversion (positive if in the direction as indicated in the parenthesis),
which invokes neither scale–scale interactions nor location–location energy exchange.

The equation for vorticityζ = k · ∇ ∧ v is obtained by crossing the momentum Eq.(13)
followed by a dot product withk,

∂ζ

∂t
= k · ∇ ∧ w

∂v
∂z

− k · ∇ ∧ [(f + ζ)k ∧ v] + Fζ,z + Fζ,h, (82)

whereFζ,z andFζ,h denote respectively the vertical and horizontal diffusion. Making use
of the continuity Eq.(14), we get,

∂ζ

∂t
= −∇ · (vζ) − ∂

∂z
(wζ)︸ ︷︷ ︸

(I)

−βv︸︷︷︸
(II)

+(f + ζ)
∂w

∂z︸ ︷︷ ︸
(III)

+k · ∂v
∂z

∧ ∇w︸ ︷︷ ︸
(IV)

+Fζ,z + Fζ,h︸ ︷︷ ︸
(V)

. (83)

Hereβ = ∂f/∂y is a constant if aβ-plane is approximation is assumed. But in general, it
does not need to be so. In Eq.(83), there are five mechanisms that contribute to the change of
relative vorticityζ (e.g.,Spall, 1989). Apparently, term (I) is the advection ofζ by the flow,
and term (V) the diffusion.β-Effect comes into play through term (II). It is the advection
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of planetary vorticityf by meridional velocityv. Vortex tubes may stretch or shrink. The
vorticity gain or loss due to stretching or shrinking is represented in term (III). Vortex tube
may also tilt. Term (IV) results from such a mechanism.

Enstrophy is the“energy” of vorticity, a positive measure of rotation. It is the square of
vorticity: Z = 1

2ζ
2. Following the same practice for multiscale energies, the enstrophy on

scale window� at time locationn is defined as (factor 2j2 omitted for brevity)

Z�n = 1

2
(ζ̂∼�
n )2. (84)

The evolution ofZ�n is derived from Eq.(83).
As before, first discretize the only time derivative term in Eq.(83), ∂ζ/∂t, to δtζ. Take a

multiscale transform of the resulting equation and then multiply it byζ̂∼�
n . The left hand

side results in the evolution̂δnZ�n plus a correction term which is of the order+t2,+t being
the time spacing of the series. Merging the correction term into the horizontal diffusion, we
get an equation

Ż
�
n = −ζ̂∼�

n

[
∇ · (v̂ζ)∼�

n + ∂(ŵζ)∼�
n

∂z

]
︸ ︷︷ ︸

(AD)

−βζ̂∼�
n v̂∼�

n + f ζ̂∼�
n

(
∂̂w

∂z

)∼�

n

+ ζ̂∼�
n

(
ζ̂
∂w

∂z

)∼�

n

+ ζ̂∼�
n k ·

(
̂∂v

∂z
∧ ∇w

)∼�

n

+ FZ�n ,z + FZ�n ,h.

Again,FZ�n ,z andFZ�n ,h here are just symbolic representations of the vertical and horizontal
diffusions. Following the practice in deriving the APE equation, the process represented by
the advection-related terms (AD) can be decomposed into a sum of transport processes and
transfer processes. Denote

+hQZ�n = −∇ · [λcζ̂
∼�
n (v̂ζ)∼�

n ], (85)

+zQZ�n = − ∂

∂z
[λcζ̂

∼�
n (ŵζ)∼�

n ] (86)

then it is

AD = +hQZ�n ++zQZ�n + [−+hQZ�n − ζ̂∼�
n ∇ · (v̂ζ)∼�

n + λc(ζ̂2)∼�
n ∇ · v̂∼�

n ]

+
[
−+zQZ�n − ζ̂∼�

n

∂(ŵζ)∼�
n

∂z
+ λc(ζ̂2)∼�

n

∂ŵ∼�
n

∂z

]
≡ +hQZ�n ++zQZ�n + TZ�n ,∂hζ + TZ�n ,∂zζ,

where+hQZ�n and+zQZ�n represent the horizontal and vertical transports, andTZ�n ,∂hζ,
TZ�n ,∂zζ the transfer rates for two distinct processes. It is easy to prove that both of these
processes are perfect transfers. Note the multiscale continuity Eq.(35) has been used in
obtaining the above form of decomposition. If necessary,+hQZ�n andTZ�n ,∂hζ may be
further decomposed into contributions fromx andy directions, respectively.
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The enstrophy equation now becomes, after some algebraic manipulation,

Ż
�
n = +hQZ�n ++zQZ�n + [−+hQZ�n − ζ̂∼�

n ∇ · (v̂ζ)∼�
n + λc(ζ̂2)∼�

n ∇ · v̂∼�
n ]

+
[
−+zQZ�n − ζ̂∼�

n

∂(ŵζ)∼�
n

∂z
+ λc(ζ̂2)∼�

n

∂ŵ∼�
n

∂z

]

−βζ̂∼�
n v̂∼�

n + f ζ̂∼�
n

∂ŵ∼�
n

∂z
+ ζ̂∼�

n

(
ζ̂
∂w

∂z

)∼�

n

+ ζ̂∼�
n k ·

(
̂∂v

∂z
∧ ∇w

)∼�

n

+ FZ�n ,z + FZ�n ,h. (87)

Or, symbolically,

Ż
�
n = +hQZ�n ++zQZ�n + TZ�n ,∂hζ + TZ�n ,∂zζ + SZ�n ,β + SZ�n ,f∇·v

+ TSZ�n ,ζ∇·v + TSZ�n ,tilt + FZ�n ,z + FZ�n ,h. (88)

The meanings of these symbols are tabulated inAppendix D.
Each term of Eq.(88) has a corresponding physical interpretation. We have known

that+hQZ�n and+zQZ�n are horizontal and vertical transports ofZ�n , respectively, and
TZ�n ,∂hζ andTZ�n ,∂zζ transfer rates for two perfect transfer processes. Ifζ is horizontally
and vertically a constant, thenTZ�n ,∂zζ andTZ�n ,∂hζ sum up to zero. We have also explained
FZ�n ,z + FZ�n ,h represents the diffusion process. Among the rest terms,SZ�n ,β andSZ�n ,f∇·v
stand for two sources/sinks ofZ due toβ-effect and vortex stretching, andTSZ�n ,ζ∇·v and
TSZ�n ,tilt transfer as well as generate/destroy enstrophy. Processes cannot be well separated
for them. In a 2D system, bothTSZ�n ,ζ∇·v andTSZ�n ,tilt vanish. As a result, the multiscale
enstrophy equation is expected to be more useful for a plane flow than for a 3D flow.

12. Summary and discussion

A new methodology,multiscale energy and vorticity analysis, has been developed to
investigate the inference of fundamental processes from real oceanic or atmospheric data for
complex dynamics which are nonlinear, time and space intermittent, and involve multiscale
interactions. Multiscale energy and enstrophy equations have been derived, interpreted, and
compared to the energetics in classical formalism.

The MS-EVA is based on a localized orthogonal complementary subspace decomposi-
tion. It is formulated with the multiscale window transform, which is constructed to cope
with the problem between localization and multiscale representation.4 The concept of scale
and scale window is introduced, and energy and enstrophy evolutions are then formulated for
the large-scale, meso-scale, and sub-mesoscale windows. The formulation is principally in
time and hence time scale window, but with a treatment in the horizontal dimension. We em-
phasize that, before physically interpreted,all the final energetics should be multiplied by a

4 In the classical framework, multiscale energy does not have location identity of the dimension (time or space)
to which the multiscale decomposition is performed.
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constant factor2j2, and horizontally filtered with a 2D large-scale window synthesis. When
the large-scale window boundj0 = 0, and a periodic extension scheme (� = 1) is adopted,
the multiscale energy Eqs. [(50) and (65)] in a two-window decomposition are reduced to the
mean and eddy energy equations in a classical framework. In other words, our MS-EVA is a
generalization of the classical energetics formalism to scale windows for generic purposes.

We have paid particular attention to the separation of transfers from the energetics re-
sulting from nonlinearity. The separation is made possible by looking for a special type
of process, the so-called perfect transfer. A perfect transfer process carries energy through
scale windows, but does not generate nor destroy energy as a whole in the system.

Perfect transfer terms can be further decomposed to unravel the complicated window-
window interactions. This is the so-called interaction analysis. Given a transfer function
T, an interaction analysis results in many interaction terms, which can be cast into the
following four groups:

T�1→�, T�2→�, T�1⊕�2→�, T�→�,

each characteristic of an interaction process. Here superscripts� = 0,1,2 stand for large-,
meso-, and sub-meso-scale windows, respectively, and�1 = (� + 1) mod 3,�2 = (� +
2) mod 3. Explicit expressions for these functions are given in Eqs.(77)–(80).

By collecting the MS-EVA terms, energetic processes have been classified into four cate-
gories: transport, perfect transfer, buoyancy conversion, and dissipation/diffusion processes.
Transport vanishes if integrated over a closed physical space; buoyancy conversion medi-
ates between KE and APE on each individual window; while perfect transfer acts merely to
redistribute energy between scale windows. The whole scenario is like a complex cycle, as
shown inFig. 7. These “conservative mechanisms” can essentially make energy reach any-
where in the super space formed with physical space, phase space, and space of energy type.
It is not unreasonable to conjecture that, many patterns generated in geophysical fluid flows,
complex as they might appear to be, could be a consequence of these energy redistributions.

Our MS-EVA therefore contains energetic information which is fundamental to GFD
dynamics. It is expected to provide a useful platform for understanding the complexity of
the fluids in which all life on Earth occurs. Direct applications may be set up for investigating
the processes of turbulence, wave-current and wave-wave interaction, and the stability for
infinite dimensional systems. In the sequels to this paper, we will show how this MS-EVA
can be adapted to study a more concrete GFD problem. An avenue to application will be
established for localized stability analysis (LR2), and two benchmark stability models will
be utilized for validation. In another study (LR3), this methodology will be applied to a real
problem to demonstrate how process inference is made easy with otherwise a very intricate
dynamical system.
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Appendix A. Correction to the time derivative term

We have shown in Section5 that there exists a correction term in the formulas with time
derivatives. For a kinetic equation, this formula is

δ̂nKn︸ ︷︷ ︸
(K)

− (+t)2(δ̂2
n2v̂n · δ̂nv̂n)︸ ︷︷ ︸
(C)

, (A.1)

where (C) is the correction term. Scale superscripts are omitted here since we do not want
to limit the discussion to any particular scale window. Let’s first do some nondimensional
analysis so that a comparison is possible. Scalev̂n with U, t with T, then

Term (K) ∼ U2

T
, Term (C)∼ (+t)2

U

T 2
· U
T

= (+t)2
U2

T 3
.

This enables us to evaluate the weight of (C) relative to (K):

Term (C)

Term (K)
∼ (+t)2U2/T 3

U2/T
=
(
+t

T

)2

.

Apparently, this ratio will become significant only whenT ∼ +t, i.e., when the time scale
is of the time step size. In our MS-EVA formulation, the correction term (C) is hence not

Fig. A.1. δ̂nKn (thick solid) and its correction term (dashed) for the large-scale (left), meso-scale (middle), and
sub-mesoscale (right) kinetic energy equations. Data source and parameter choice are the same as those ofFig. 4
(units in m2/s3; factor 2j2 not multiplied).



X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans 38 (2005) 195–230225

significant for both large-scale and meso-scale equations.Fig. A.1confirms this conclusion.
The correction (dashed line) is so small in either the left or middle plots that it is totally
negligible. Only in the sub-mesoscale window can its effect be seen, which, as argued
before, might be parameterized into the dissipation/diffusion.

Appendix B. Interaction analysis for T (0, n) and T (2, n)

Using the technique same as that forT (1, n) in Section9, we obtain a similar analysis
for T (0, n):

T (0, n) = R̂∼0
n · (p̂q)∼0

n = T 1→0
n + T 2→0

n + T 1⊕2→0
n + T 0→0

n→n + T 0→0
other→n, (A.2)

where

T 1→0
n = R̂∼0

n · [(p̂∼1q∼1)∼0
n + (p̂∼1q∼0)∼0

n + (p̂∼0q∼1)∼0
n ] (A.3)

T 2→0
n = R̂∼0

n · [(p̂∼0q∼2)∼0
n + (p̂∼2q∼2)∼0

n + (p̂∼2q∼0)∼0
n ] (A.4)

T 1⊕2→0
n = R̂∼0

n · [(p̂∼2q∼1)∼0
n + (p̂∼1q∼2)∼0

n ] (A.5)

T 0→0
n→n = R̂∼0

n · [p̂∼0
n q̂∼0

n (φ̂�,j2
n )

2∼0

n ] (A.6)

T 0→0
other→n = R̂∼0

n · [( ̂p∼0q∼0∗0)∼0
n + q̂∼0

n (
̂

p∼0∗0φ
�,j2
n )∼0

n ], (A.7)

andT (2, n):

T (2, n) = R̂∼2
n · (p̂q)∼2

n = T 0→2
n + T 1→2

n + T 0⊕1→2
n + T 2→2

n→n + T 2→2
other→n, (A.8)

where

T 0→2
n = R̂∼2

n · [(p̂∼0q∼0)∼2
n + (p̂∼2q∼0)∼2

n + (p̂∼0q∼2)∼2
n ] (A.9)

T 1→2
n = R̂∼2

n · [(p̂∼1q∼2)∼2
n + (p̂∼1q∼1)∼2

n + (p̂∼2q∼1)∼2
n ] (A.10)

T 0⊕1→2
n = R̂∼2

n · [(p̂∼0q∼1)∼2
n + (p̂∼1q∼0)∼2

n ] (A.11)

T 2→2
n→n = R̂∼2

n · [p̂∼2
n q̂∼2

n (φ̂�,j2
n )

2∼2

n ] (A.12)

T 2→2
other→n = R̂∼2

n · [(p̂∼2q∼2
∗2 )∼2

n + q̂∼2
n (

̂
p∼2

∗2 φ
�,j2
n )∼2

n ]. (A.13)

In these analyses,p∗0 andp∗2 are defined as

p∗0 = p− p̂∼0
n φ�,j2

n (t), (A.14)

p∗2 = p− p̂∼2
n φ�,j2

n (t). (A.15)

The physical meaning of the interaction terms is embedded in these mnemonic notations.
In the superscripts, arrows signify the directions of energy transfer and the numbers 0–2
represent the large-scale, meso-scale, and sub-mesoscale windows, respectively.
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Appendix C. Connection between the MS-EVA KE equations and the mean and
eddy KE equations in a classical Reynolds formalism

To connect our MS-EVA to the classical energetic formulation, rewrite Eq.(50) (dissi-
pation omitted) as

v̂∼�
n ·

(
∂̂v
∂t

)∼�

n

= v̂∼�
n ·

[
−∇ · (v̂ v)∼�

n − ∂

∂z
(ŵv)∼�

n

]
︸ ︷︷ ︸

(I )

+ +hQP�
n

++zQP�
n

− b�n︸ ︷︷ ︸
(II )

, (A.16)

We want to see what this equation reduces to ifj1 = j2 (that is to say, onlytwo-scale
windowsare considered),j0 = 0, and aperiodic extensionis employed.

First consider the large scale window� = 0. Letq be any field variable (u, v, w, orP).
A two-scale window decomposition means

q = q∼0 + q∼1. (A.17)

With the choice of zeroj0 and periodic extension, we know from the MWT properties
(see Section2.3) thatq∼0 is constant in time and is equal to ¯q or 2j2/2q̂∼0

n in magnitude,
that is,

q∼0 = q̄ = 2j2/2 q̂∼0
n , q∼1 = q − q̄ = q′. (A.18)

Hence

(ˆ̄q)∼0
n = (q̂∼0)∼0

n = q∼0 = 2−j2/2q̄, (A.19)

(q̂′)∼0
n = (q̂∼1)∼0

n = 0. (A.20)

Substitutingv andw for theq in (A.17), the velocity field is decomposed asv = v̄ + v′,
andw = w̄+ w′. LetKmean= 1

2 v̄ · v̄. The equivalence between the large-scale transform
and duration average allows an expression of the large-scale kinetic energyK0

n in terms of
Kmean. In fact,

K0
n = 2j2

(
1

2
v̂∼0
n · v̂∼0

n

)
= 1

2
v̄ · v̄ = Kmean. (A.21)

Note here we have taken into account the multiplier 2j2. These facts are now used to simplify
the term (I ) of Eq.(A.16). With the two-scale decomposition, the dyad (v v) after transform
is expanded as

(v̂ v)∼0
n = (̂̄v v̄)∼0

n + (̂̄v v′)∼0
n + (v̂′ v̄)∼0

n + (v̂′ v′)∼0
n (A.22)

(v̂ v)∼0
n = v̄v̂∼0

n + (v̂′ v′)∼0
n . (A.23)
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Likewise,

(ŵv)∼0
n = w̄v̂∼0

n + (ŵ′v′)∼0
n . (A.24)

These allow term (I ) to be written as

(I ) = v̂∼0
n ·

[
−∇ · (v̄ v̂∼0

n ) − ∂

∂z
(w̄v̂∼0

n )

]
+ v̂∼0

n ·
[
−∇ · (v̂′v′)∼0

n − ∂

∂z
(ŵ′v′)∼0

n

]
= 2−j2

{
−∇ · (v̄Kmean) − ∂

∂z
(w̄Kmean) + v̄ ·

[
−∇ · (v′v′) − ∂

∂z
(w′v′)

]}
= 2−j2

{
−∇ · (v̄Kmean) − ∂

∂z
(w̄Kmean) + v̄ · ∇3 · T

}
, (A.25)

where

∇3 = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

and

T =

 −(u′u′) −(u′v′) −(u′w′)
−(v′u′) −(v′v′) −(v′w′)
−(w′u′) −(w′v′) −(w′w′)

 . (A.26)

For term (II ), it is equal to, in the present setting,

(II ) = 2−j0

{
− 1

ρ0
∇ · (P̄ v̄) − 1

ρ0

∂

∂z
(P̄w̄) − g

ρ0
w̄ρ̄.

}
(A.27)

Substitute (I ) and (II ) back to Eq.(A.16). Considering that the left hand side is now 2−j0v̄ ·(
∂v
∂t

)
, we have, with the common factor 2−j0 cancelled out,

v̄ ·
(
∂v
∂t

)
= −∇ · (v̄KL) − ∂

∂z
(w̄KL) − 1

ρ0
∇ · (P̄ v̄) − 1

ρ0

∂

∂z
(P̄w̄)

− g

ρ0
w̄ρ̄.+ v̄ · ∇3 · T. (A.28)

This is exactly whatHarrison and Robinson (1978)have obtained for the mean kinetic
energy, withT the Reynolds stress tensor in their formulation.

Above is about the large-scale energetics. For the meso-scale window (� = 1), things
are more complicated. In order to make Eq.(A.16) comparable to the classical eddy KE
equation, justj0 = 0 and periodic extension are not enough, as now there no longer exists
for variablep a linear relation between ˆp∼1

n andp′. We have to marginalize(A.16) to the
physical space to fulfill this mission. In this particular case, the marginalization equality
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(11) in Section2.3 is simply

Mnp̂
∼1
n q̂∼1

n = p′q′, (A.29)

since here the deviation operation (prime) and the meso-scale synthesis operator are iden-
tical. Marginalization of(A.16) with � = 1 yields

v′ ·
(
∂v
∂t

)′
= − v′ · ∇ · (vv)′︸ ︷︷ ︸

(I ′)

− v′ · ∂

∂z
(wv)′︸ ︷︷ ︸

(II ′)

− v′ · ∇
(
P ′

ρ0

)
︸ ︷︷ ︸

(III ′)

. (A.30)

It is easy to show, as we did before,

(III ′) = ∇ ·
(
v′P

′

ρ0

)
+ ∂

∂z

(
w′P

′

ρ0

)
+ g

ρ0
w′ρ′. (A.31)

The other two terms sum up to

(I ′) + (II ′) = ∇ ·
(
v
v′ · v′

2

)
+ ∂

∂z

(
w
v′ · v′

2

)
+ v′v′ : ∇v̄ + v′w′ · ∂v̄

∂z
. (A.32)

Therefore,

v′ ·
(
∂v
∂t

)′
= −∇ ·

(
v
v′ · v′

2

)
− ∂

∂z

(
w
v′ · v′

2

)
− ∇ ·

(
v′P

′

ρ0

)

− ∂

∂z

(
w′P

′

ρ0

)
− g

ρ0
w′ρ′ − v′v′ : ∇v̄ − v′w′ · ∂v̄

∂z
. (A.33)

Again, this is exactly the eddy KE equation obtained byHarrison and Robinson (1978).

Appendix D. Glossary

Tables A.1–A.3.

Table A.1
General symbols

A�
n Available potential energy on window� at time 2−j2n

j0, j1, j2 Upper bounds of scale level for the three scale windows

K�
n Kinetic energy on window� at time 2−j2n

V�,j2 Direct sum of the three scale windows.

� Window index (� = 0,1,2 for large-scale, meso-scale, and sub-mesoscale windows, respectively)

Z�n Enstrophy on window� at time 2−j2n

ẑ∼�
n Multiscale window transform of variablez

z∼� Multiscale window synthesis of variablez

z̄ Duration average of variablez

φ
�,j
n Periodized scaling basis function at levelj

ψ
�,j
n Periodized wavelet basis function at levelj
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Table A.2
Symbols for the multiscale energy equations (time 2−j2n, window�)

Kinetic energy (KE) Available potential energy (APE)

K̇�
n Time rate of change of KE Ȧ�

n Time rate of change of APE
+hQK�

n
Horizontal KE advective working
rate

+hQA�
n

Horizontal APE advective working rate

+zQK�
n

Vertical KE advective working
rate

+zQA�
n

Vertical APE advective working rate

TK�
n ,h Rate of KE transfer due to the hor-

izontal flow
TA�

n ,∂hρ
Rate of APE transfer due to the horizontal
gradient density

TK�
n ,z Rate of KE transfer due to the ver-

tical flow
TA�

n ,∂zρ Rate of APE transfer due to the vertical
gradient density

−b�n Rate of buoyancy conversion b�n Rate of inverse buoyancy conversion
+hQP�

n
Horizontal pressure working rate TSA�

n
Rate of an imperfect APE transfer due to
the stationary shear of the density profile

+zQP�
n

Vertical pressure working rate FA�
n ,h Horizontal diffusion

FK�
n ,z Vertical dissipation FA�

n ,z Vertical diffusion
FK�

n ,h Horizontal dissipation

Table A.3
Symbols for the multiscale enstrophy equation (time 2−j2n, window�)

Ż
�

n Time rate of change ofZ on window� at time 2−j2n

+hQZ�n Horizontal transport rate
+zQZ�n Vertical transport rate
TZ�n ,∂hζ Rate of enstrophy transfer due to the horizontal variation ofζ

TZ�n ,∂zζ Rate of enstrophy transfer due to the vertical variation ofζ

SZ�n ,β β-Effect-caused source/sink
SZ�n ,f∇·v Source/sink of enstrophy due to horizontal divergence
TSZ�n ,ζ∇·v Rate ofZ transfer and generation due to rotation-divergence correlation
TSZ�n ,tilt Rate ofZ transfer and generation due to the vortex tube tilting
FZ�n ,h Horizontal diffusion rate
FZ�n ,z Vertical diffusion rate
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