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Abstract

A new methodologymultiscale energy and vorticity analys{dS-EVA), is developed to in-
vestigate the inference of fundamental processes from oceanic or atmospheric data for complex
dynamics which are nonlinear, time and space intermittent, and involve multiscale interactions.
Based on a localized orthogonal complementary subspace decomposition through the multi-
scale window transform (MWT), MS-EVA is real problem-oriented and objective in nature. The
development begins with an introduction of the concepts of scale and scale window and the de-
composition of variables on scale windows. We then derive the evolution equations for multi-
scale kinetic and available potential energies and enstrophy. The phase oscillation reflected on
the horizontal maps from Galilean transformation is removed with a 2D large-scale window
synthesis. The resulting energetic terms are analyzed and interpreted. These terms, after being
carefully classified, provide four types of processes: transport, transfer, conversion, and dissipa-
tion/diffusion. The key to this classification is the transfer-transport separation, which is made
possible by looking for a special type of transfer, the so-cafledect transfer The intricate
energy source information involved in perfect transfers is differentiated through an interaction
analysis.

The transfer, transport, and conversion processes form the basis of dynamical interpretation for
GFD problems. They redistribute energy in the phase space, physical space, and space of energy
types. These processes are all referred to in a context local in space and time, and therefore can be
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easily applied to real ocean problems. When the dynamics of interest is on a global or duration scale,
MS-EVA is reduced to a classical Reynolds-type energetics formalism.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Energy and vorticity analysis is a widely used approach in the diagnosis of geophysical
fluid processes. During past decades, much work has been done along this line, examples
including Holland and Lin (1975), Harrison and Robinson (1978), Plumb (1983), Pinardi
and Robinson (1986), Spall (1989), Cronin and Watts (1986jame but a few. While these
classical analyses have been successful in their respective applications, real ocean processes
usually appear in more complex forms, involving interactions among multiple scales and
tending to be intermittent in space and time. In order to investigate ocean problems on a
generic basis, capabilities of classical energetic analyses need to be expanded to appropri-
ately incorporate and faithfully represent all these processes. This forms the objective of
this work.

We develop a new methodology, multiscale energy and vorticity analysis (MS-EVA),
to fulfill this objective. MS-EVA is a generic approach for the investigation of multiscale
nonlinear interactive oceanic processes which occur locally in space and time. It aims
to explore pattern generation and energy and enstrophy budgets, and to unravel the in-
tricate relationships among events on different scales and in different locations. In the
sequels to this paper (referred to as LRligng and Robinson (2005, 2004)R2 and
LR3 hereafter), we will show how MS-EVA can be utilized for instability analysis and
how it can be applied to solve real ocean problems which would otherwise be difficult to
solve.

In order to be real problem-oriented, MS-EVA should contain full physics. Approxima-
tions such as linearization are thus not allowed. It must also have a multiscale representa-
tion which retains time and space localization. In other words, the representation should
retain time intermittency, and should be able to handle events occurring on limited, irreg-
ular and time dependent domains. This makes MS-EVA distinctly different from classical
formalism.

MS-EVA should also bscale windowed.e., the multiscale decomposition must be able
to represent events occurring coherently on scale rangssate windowslLoosely speak-
ing, a scale window is simply a subspace with a certain range of scales. A rigorous definition
is deferred to Sectiof. In general, GFD processes tend to occur on scale windows, rather
than individual scales. We refer to this phenomenon as scale windowing. Scale windowing
requires a special bulk treatment of energy rather than individual scale representations, as
transfers between individual scales belonging respectively to different windows could take
a direction opposite to the overall transfer between these windows.

Multiscale events could be represented in different forms. One of the most frequently
used is wave representation (e.g., Fourier analysis), which transforms events onto many
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individual scales; another frequently used form is called eddy represenf&tionekes and
Lumley, 1972) in which a process is decomposed into a large-scale part and an eddy part,
each part involving a range of scales. Because of its scale window nature, we need an eddy
representation for MS-EVA. The resulting energetics will be similar to those of Reynolds
formulation, except that the latter is in a statistical context.

To summarize, it is required that MS-EVA handle fairly generic processes in the sense
of multiscale windowing, spatial localization, and temporal intermittency; as well as re-
tain full physics. Correspondingly an analysis tool is needed in the MS-EVA formulation
such that all these requirements are met. We will tackle this problem in a spirit simi-
lar to the wavelet transform, a localized analysis which has been successfully applied to
studying energetics for individual scales (elgma and Toh, 1995; Fournier, 19p%pecif-
ically, we need to generalize the wavelet analysis to handle window or eddy decomposition.
The challenge is how to incorporate into a window the transform coefficients (and hence
energies) of an orthonormal wavelet transform which are defined discretely at different
locations for different scales, while retaining a resolution satisfactory to the problem. (Or-
thonormality is essential to keep energy conserved.) The next section is intended to deal
with this issue. The new analysis tool thus constructed will be tenrmgitiscale window
transform or MWT for short. The whole problem is now reduced to first the building
of MWT, and then the development of MS-EVA with the MWT. In Secti®is/, we
apply MWT to derive the laws that govern the multiscale energy evolutions. The multi-
scale decomposition is principally in time, but with a horizontal treatment which preserves
spatial localization. Time scale decomposition has been a common practice and meteo-
rologists find it useful for clarifying atmospheric processes. We choose to do so in order
to make contacts with the widely used Reynolds averaging formalism, and more impor-
tantly, to have the concegtaleunambiguously defined (cf. Secti@l), avoiding extra
assumptions such as space isotropy or anisotropy. Among these sections, $ectien
voted to define energy on scale windows, and Sedtiimfor a primary treatment with
the nonlinear terms. The multiscale kinetic and potential energy equations are first de-
rived in Sections and 6based on a time decomposition, and then modified to resolve
the spatial issue with a horizontal synthesis (Secfihnin Section8, we demonstrate
how these equations are connected to energetics in the classical formalism. This section
is followed by an interaction analysis for the differentiation of transfer sources (Section
9), which allows a description of the energetic scenario with our MS-EVA analysis in
both physical and phase spaces (SectiGn As “vorticity” furnishes yet another part of
MS-EVA, in Sectionl1 we briefly present how enstrophy evolves on multiple scale win-
dows. This work is summarized in Sectib®, where prospects for application are outlined
as well.

2. Multiscale window analysis and marginalization

In this section, we introduce the concept of scale window, multiscale window transform
(MWT), and some properties of the MWT, particularly a property referred to as marginal-
ization. A thorough and rigorous treatment is beyond the scope of this paper. For details,
the reader is referred tdang (2002)(L02 hereafter) antliang and Anderson (2005)
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2.1. Scale and scale window

The introduction of MWT relies on how a scale is defined. In this context, our definition
of scaleis based on a modified wavelet analysis (fermandez and Weiss, 1996~or
convenience, we limit the initial discussion to 1D functions. The multi-dimensional case is
a direct extension and can be found in L02, Section 2.7. For any funefidr L[0, 1],
it can been analyzed as (L02):

+002/0—1 ' -
pO=Y Y Bivei®, te01] (1)
j=0 n=0
where
yoi(ty= Y 2/7y2i(t+ot)—n]. n=01...,2¢-1 2)
l=—00

andy is some orthonormalized wavelet functididere we choose it to be the one built
from cubic splines, which is shown ifig. 1a. The “period”e has two choices only: one

is o = 1, which gives a periodic extension of the signal of interest fromi]@o the whole
real lineRR; another iso = 2, corresponding to an extension by reflection, which is also an
“even periodization” of the finite signal f& (see L02 for details).

The distribution ofwrl,”(t) with j = 2, 4, 6 is shown inFig. 1b. Eachj corresponds to a
quantity 2-/, which can be used to define a time metric to relate the passage of temporal
events since a selected epoch. We calljtiscale leveland 27/ the correspondingcale
over [0, 1].

Given the scale as conceptualized, we proceed to define scale windows. In the analysis
(1), we can group together those parts with a certain range of scale levels;j;say,#

1,..., j2), to form a subspace af;[0, 1]. This subspace is called scale windowof

L>[0, 1] in LO2 with scale levels ranging froni to j». In doing this, any function in

L»[0, 1], say p(z), can be decomposed into a sum of several parts, each encompassing
exclusively features on a certain window of scales. Specifically for this work, we define three
scale windows:

e large-scale window: & j < jo,
e meso-scale windowjp < j < ji,
e sub-mesoscale windowi < j < jo.

The scale level boundg, j1, jo are set according to the problem under consideration.
Particularly, j» corresponds to the finest resolution (sampling intervakRpermissible

by the given finite signals. By projecting(z) onto these three windows, we obtain its
large-scale, meso-scale, and sub-mesoscale features, respectively. This decomposition is
orthogonal, so the total energy thus yielded is conserved.

1 The notation5[0, 1] is used to indicate the space of square integrable functions definedjn [0
2 This is to say{(r — £), £ € Z} (Z the set of integers) forms an orthonormal set.
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Fig. 1. Scaling and wavelet functions (a) and their corresponding periodized basek) ({¢§’j(t)},, (left panel)

and{z//ﬁ‘j(t)}n (right panel) with scale levelg = 2 (top), j = 4 (middle), andj = 6 (bottom), respectively (b).
The scaling and wavelet functiogsandy are constructed from cubic splines (deéang, 2002 Section 2.5).

2.2. Multiscale window transform

Scale windows are defined with the aid of wavelet basis, but the definition of multiscale
window transform does not follow the same line because of the difficulty we have described
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in the introduction, i.e., that orthonormal wavelet transform coefficients are defined dis-
cretely on different locations for different scales. To circumvent this problem, we make a
direct sum of the subspaces spanned by the wavelet pg$(S(1)},,, for all m < j. The
shift-invariant basis of the resulting subspace can be shown #§ be) (L02), which is
the periodization [cf. (2)] of some(r), the orthonormal scaling function in company with
the wavelet functiony(z). Here¢ is an orthonormalized cubic spline, as showifrig. 1a.
We utilize thep” thus formed to fulfill our task. In the following only the related formulas
and equations are presented. The details are referred to LO2.

LetV, j, indicate the total (direct sum, to be strict) of the three scale windows. It has been
established by LO2 that any time signal from a given GFD dataset is justifiably belonging
to V,, j,,» with some finite levelj>. Suppose we havg(r) € V, j,. Write

. @ . .
by = / pt)gp’(t)dr,  forall0< ;<)o n=01...,20-1 (3)
0

Given window boundgo, j1, j2, andp € V, j,, three functions can be accordingly defined:

2/0p—1 . .
P =) pleg@), (4)
n=0
2jlg—1 . .
P = ) Bieg ) - 00, (5)
n=0
2jlgfl . .
PP =p()— Y i), (6)

n=0

on the basis of which we will build the MWT later. As a scaling transform coefficight, ~
contains all the information with scale level lower than or equil The functionsp™9(z),
p~ (1), p~2(r) thus defined hence include only feature@f) on ranges 6- jo, jo — j1,
andji — jo, respectively. For this reason, we term these functions as large-scale, meso-scale,
and sub-mesoscale syntheses or reconstructiop&)pfwith the notation~0, ~1, and~2
in the superscripts signify the corresponding large-scale, meso-scale, and sub-mesoscale
windows, respectively.

Using the multiscale window synthesis, we proceed to define a transform

o .
P = /0 P (188 2(1) i @)

forwindowsm = 0,1,2,n =0, 1, ..., 22¢ — 1. This is themultiscale window transform

or MWT for short, that we want to build. Notice here we use a periodized scaling basis at
J2, the highest level that can be attained for a given time series. As a result, the transform
coefficients have a maximal resolution in the sampldiection.
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In terms ofp,, @, Eqs.(4)—(6)can be simplified as

2/29—1

PO =Y BT R), (®)

n=0

forw =0, 1, 2. Eqs.(7) and (8)are the transform-reconstruction pair for our MWT. For
anyp eV, j,, it can be now represented as

2 2020-1

pe)y=>" > prTe2(). 9

w=0 n=0

A final remark on the choice of extension scheme, or the “pergonli’the analysis. In
general, we always adopt the extension by reflectien 2, which has proved to be very
satisfactory. Fig. 4 shows such an example.) If the signals given are periodic, then the
periodic extension is the exact one, and hemsbould be chosen to be 1. In case of linking
to the classical energetic formalispn= 1 is also usually used.

2.3. MWT properties and marginalization

Multiscale window transform has many properties. In the following we present two of
them which will be used later in the MS-EVA development (for proofs, refer to L02).

Property 1. Foranyp €V, ;,,if jo =0,ando = 1 (periodic extension adoptedjien
13;0 = 272120y = 277212 = constant, foralln, andt, (20)

where the overbar stands for averaging over the duration

Property 2. For p and ¢ inV,, j,,

Maub, "4, " = p~(1)g~ (1), (11)
where
N—1
MuBr a8, ") =Y b7y [Po o7 +PNTaN"l.  (N=27) (12
n=1

Property 1states that whenip = 0 and a periodic extension is used, the large-scale
window synthesis is simply the duration averageoperty 2involves a special summation
over [0, N] (corresponding ta € [0, 1]), which we will call marginalizationhereafter.
The word “marginal” has been used in literature to describe the overall feature of a
localized transform (e.gHuang et al., 1999 We extend this convention to establish an
easy reference for the operat®d,,. Property 2can now be restated as: a product of two
multiscale window transforms followed by a marginalization is equal to the product of
their corresponding syntheses averaged over the duration. For convenience, this property
will be referred to aproperty of marginalization
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We close this section by making a comparison between our MWT and wavelet anal-
ysis. The commonality is, of course, that both of them are localized on the definition
domain. The first and largest difference between them is that the MWT is not a trans-
form in the usual sense. It is an orthogonal complementary subspace decomposition, and
as a result, the MWT coefficients contain information for a range of scales, instead of
a single scale. For this reason, it is required that three scale bounds be specified a pri-
ori in constructing the windows. A useful way to do this is through wavelet spectrum
analysis, as is used in LR3. Secondly, the MWT transform is projectéd, ¢ so trans-
form coefficients obtained for all the windows have the same resolution—the maximal
resolution allowed for the signal. This is in contrast to wavelet analysis, whose transform
coefficients have different resolution on different scales. We will see soon that, this maxi-
mized resolution in MWT transform coefficients puts the embedded phase oscillation under
control.

3. Multiscale energies

Beginning this section through Sectioh we will derive the equations that gov-

ern the multiscale energy evolutions. The whole formulation is principally based on
a time decomposition, but with an appropriate filtering in the horizontal dimensions.
It involves a definition of energies on different scale windows, a classification of dis-
tinct processes from the nonlinear convective terms, a derivation of time windowed
energetic equations, and a horizontal treatment of these equations with a space win-
dow reconstruction. In this section, we define the energies for the three time scale
windows.

3.1. Primitive equations and kinetic and available potential energies

The governing equations adopted in this study are:

1
Yo v - U kv VPR, 4 Ey (13)
at £0
ow
0=V.v4—, (14)
0z
oP
0=—8——,08, (15)
Z
9 a(w N2
R R B L LR (16)

wherev = (u, v) is the horizontal velocity vectoly = 1% +J_% the horizontal gradient

operatorN = (—— ) ? the buoyancy frequency (= p(z) is the stationary density pro-

file), p the denS|ty perturbatlon with excluded, andP the dynamic pressure. All the other
notations are conventional. The friction and diffusion terms are just symbolically expressed.
The treatment of these subgrid processes in a multiscale setting is not considered in this
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paper. From Eqg13) and (14)it is easy to obtain the equations that govern the evolution
2
of two quadratic quantitiesk = %y -V, andA = %#pz (seeSpall, 1989. These are
0
the total kinetic energy (KE) and available potential energy (APE), given the location in

space and time. The essence of this study is to investigate how KE and APE are distributed
simultaneously in the physical and phase spaces.

3.2. Multiscale energies

Multiscale window transforms equipped with the marginalization prop@riy allow
a simple representation of energy for each scale window 0, 1, 2. For a scalar field

S(t) € V., let E7* = (§77)°. By (11),

M ET* = / ' [S™7 ()% dt, (17)
0

which is essentially the energy 8fon windowz (up to some constant factor) integrated
with respect td over [0, 1). RecallM,, is a special sum over théZXiscrete equi-distance
locationsn = 0,1,...,22 — 1. E7* thus can be viewed as the energy on windew
summed over a small interval of lengttr = 2772 around locationr = 2~/2n. An energy
variable for windows at time 27/2n consistent with the fields at that location is therefore
a locally averaged quantity

1

EY = CEV =27 (87), (18)

forallew =0, 1, 2. Itis easy to establish that
1
Mu(E + E} + E?) At = / S2(1) . (19)
0
This is to say, the energy thus defined is conserved.

In the same spirit, the multiscale kinetic and available potential energies now can be
defined as follows:

1 . A 1 1
Ky = 51250 7) + 270, 7)] = 27 [52,7 T w] (20)
w Jj2 1 g2 AT AT Jj2 1 AT AT
Ay = 2 EIOZNZ'OH " Py =2 Ecpn Pn ’ (21)
0

where the shorthand= g?/(p3N?) is introduced to avoid otherwise cumbersome deriva-
tion of the potential energy equation. (Natés z-dependent.) The purpose of the following
sections are to derive the evolution laws f6f and A?. Note the factor 2, which is a
constant once a signal is given, provides no information essential to our dynamics analysis.
In the MS-EVA derivation, we will drop it in order to avoid otherwise awkward expres-
sions. Thereforeall the energetic terms hereafter, unless otherwise indicatrduld be
multiplied by2/2 before physically interpreted
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4. Perfect transfer and transfer-transport separation

The MS-EVA is principally developed for time, but with a horizontal treatment for
spatial oscillations. Localized energetic study with a time decomposition (and the statistical
formulation) raises an issue: the separation of transport from the nonlinear term-related
energetics. Here by transport we mean a process which can be represented by some quantity
in a form of divergence. It vanishes if integrated over a closed domain. The separation of
transport is very important, since it allows the cross-scale energy transfer to come upfront.

Transfer—transport separation is not a problem in a space decomposition-based energetic
formulation, e.g., the Fourier formulation. In that case the analysis over the space has already
eliminated the transport, and as a result, the summation of the triad interaction terms over all
the possible scales vanishes. This problem surfaces in a localized time-based formulation
when uniqueness is concerned. In this section, we will show how it is resolved.

We begin by introducing a concemterfect transfer procesg$or our purpose. The so-
called perfect transfeiis a family of multiscale energetic terms which vanish upon sum-
mation over all the scale windows and marginalization over the sampled time locations. A
perfect transfer processr simply perfect transfer when no confusion arises in the context,
is then a process represented by perfect transfer term(s). Perfect transfers move energy from
window to window without destroying or generating energy as a whole. They represent a
kind of redistribution process among multiple scale windows. In terms of physical signifi-
cance, the concept of perfect transfer is a natural choice. We are thence motivated to seek
through a larger class of “transfer processes” for perfect transfers, which set a constraint
for transport—transfer separation and hence help to solve the above uniqueness problem.

For a detailed derivation of the transport—transfer separation, reférig et al. (2005)

Briefly cited here is the result with some modification to the needs in our context. The idea
is that, for an incompressible fluid flow, we can have the nonlinear-term related energetics
separated into a transport plus a perfect transfer, and the separation is unique. For simplicity,
consider a scalar field = S(z, x, y). Suppose it is simply advected by an incompressible
2D flow v, i.e., the evolution is governed by

%:—V-@S), V.v=0. (22)

Let EY = %(3;”)2 be its energy (variance) at time locatiaron scale windoww. The
evolution of E? can be easily obtained by making a transform of the equation followed by

a product with§;w. We are tasked to separate the resulting triple product term

NL = =377V - (@3),”
as needed. By L02, this is done by performing the separation as
NL = -V Qg +[-5,7V-(¥S),” +V Q] =AuQsp + Tsp. (23)

where

Qq = A87@),”. re=1} (24)
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and
ApQsyp = -V -Qq, (25)
Top = =8,7V-(\3),” +V-Q,,. (26)

It is easy to verify that

> M, Tsp =0, (27)

which implies thatl's» represents a perfect transfer process.

Eq. (23) is the transport—transfer separation for the scalar variance evolution in a 2D
flow. For the 3D case, the separation is in the same form. One just needs to change the
vectors and the gradient operator(#8) into their corresponding 3D counterparts.

5. Multiscale kinetic energy equation

The formulation of multiscale energetics generally follows from the derivation for the
evolutions ofK and A. The difference lies in that here we consider our problem in the
phase space. Since the basis functér, for any 0< j < j», is time dependent, and the
derivative ofgp?/ does not in general form an orthogonal pair witlV itself, the local time
change terms in the primitive equations need to be pre-treated specially before the energy
equations can be formulated. Similar problems also exIstimison and Robinson (1978)
formalism. Appearing on the left hand side of their kinetic energy equat@n%, notin
a form of time change o}V - v.

To start, first considedv/dr. Recall that our objective is to develop a diagnostic tool
for an existing dataset. Thus every differential term has to be replaced eventually by its
difference counterpart. That is to say, we actually do not need to dealowith itself.
Rather, it is the discretized form (space-dependence suppressed for clarity)

V(t+ Ar) —v(t — Ar)
2At -

A

that we should pay attention ta( is the time step size). Viewed as functions,of(r + Ar)
andv(r — Ar) make two different series and may be transformed separately. Let

e .
| v angra =gy, (28)
0

/Q!Nw(t — AP R(r) dr = V7, (29)
0

whereg is the periodicity of extensiorp(= 1 and 2 for extensions by periodization and
refection, respectively), and define an operdfosuch that

Ry

b0, = S (30)
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?S,,Q;w is actually the transform af;v, or the rate of change &, on its corresponding
scale window. Similarly, define difference operators of the second order as follows:
V(t + Af) — 2v(t) + v(r — Ar)

Y (a1 ’

(31)

82,0, = / TRV i) d (32)
=/ v ¢ :
0

Now take the dot product &f; @ with 8,97,

R o B 7% kP PR 1 e Pl W TR
; - 2 2 2At1
1 /1. - 1. N
= 2A; (Eynf’ VY- Evnf’ -\_/nw> — (AP35, - 5,9,7)
= B K57 — (A2(29,7 - 8,9,™), (33)
where
K7 = 30,7 -0,7 (34)

is the kinetic energy at locatiom (in the phase space) for the windaw (the factor 22
omitted). Note thak ? is different fromK ;™. The latter is the multiscale window transform
of K, not a concept of “energy”. Another quantity that might be confused &jthis K~

or the fieldK reconstructed on windowr. K~? is a property in physical space. It is
conceptually different from the phase space-basgdfor velocity.

Observe that the first term on the right hand side of 8) is the time change (in
difference form) of the kinetic energy on window at time 2-/2n (scaled by the series
length). The second term, which is proportional tor)?, is in general very small (of
order O[(Ar)?] compared tdb,, K7). As shown inAppendix A it could be significant only
when processes with scales of grid size are concerned. Besides, it is expressed in a form
of discretized Laplacian. We may thereby view it indistinguishably as a kind of subgrid
parameterization and merge it into the dissipation terms. Thedgfm 3,1\7”‘" which is
akin to Harrison and Roblnson,s d[, is thus merely the change rate®§’, with a small
correction of order 4r)? (t scaled by the series duration).

Terms other thaf,v anda; o in a 3D primitive equation system do not have time deriva-
tives involved. Multiscale window transforms can be applied directly to every field variable
in spite of the spatial gradient operators, If any. To continue the derivation, first take a
multiscale window transform dfL4),

8A;w+v-\7”w=0. (35)
0z -
Dot product of the momentum equation reconstructed f(@3) on window @ with
Q;w#j’jz(t), followed by an integration with respect toover the domain [0p), gives
the kinetic energy equation for window. We are now to arrange the right hand side of
this equation into a sum of some physically meaningful terms.
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Look at the pressure work first. By E5), it is

e __ ypm
[ =g —gprya
0 £0
A 1 - IR )
- T n__ _ T |y (P Z(prEoe ~~aw %n
- 00 po[ (P %, )+3z(" n )]+w" dz
17 . 5 . ¢
— |y (P (P - Sp Ty T
po[ (P ¥, ")+ Bz( n ¥n )} pon P
= AQpr + A Qpr — by, (36)

where A, Qp= and A, Qp= (Qp the pressure flux) are respectively the horizontal and
vertical pressure working rate® (stands for flux, a convention in many fluid mechan-
ics textbooks). The third term:b7 = —ioﬁ);wi)n”w, is the rate of buoyancy conversion
between the kinetic and available potential energies on wingow

Next look at the friction term&,, . andF,, in Eq. (13). They stand for the effect of
unresolved sub-grid processes. An explicit expression of them is problem-specific, and is
beyond of scope of this paper. We will simply write these two termBas,; and Fg= j,
which are related to thg,,. andF,,, in Eq.(13)as follows:

Fir . =07 (E)7®, 37)
Frpn =07 - (B ™ + (AD2(2,0,7 - 3,9,™). (38)

In the above, the correction ﬁgK,‘f in (33) has been included, as it behaves like a kind of
horizontal dissipation.

For the remaining part, the Coriolis force does not contribute to incr&seThe
nonlinear terms are what we need to pay attention. Specifically, we need to separate

o . ISR R
NLz_ynw'V'(!\_/)nw_!nw.a_Z(w!)nw

into two classes of energetics which represent transport and transfer processes, respectively.
This can be achieved by performing a decomposition as we did in Sediothe 3D case,
with the field variableSin (23) replaced by andv, respectively. Let

Q, =+Y,7- (V)7 =AY, - (VV), ", (39)
Q: =2V, 7 - (wy),”, (40)

wherei, = 3. Further define
ApQky =—V-Q,. (41)

00
0z

AZQKZ’ = — s (42)
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Tiwp=-0"-V-@W;" +V-Q,. (43)
o 0 00
Then it is easy to show that
NL = (An Qkp + A Qkyp) + (Tgw j + Tko 2) (45)
is the transport—transfer separation for which we are seeking, with
1, - e~ e o
0, i A o
- @), -V, + = (wy),” (46)
0z - 0z

the perfect transfer.
In (45), although (%, , + Tgw ,) as awhole is perfectg,, , or Tg., . alone is not. In
order to make them so, introduce the following terms:

Tkgn = Tign = K7V -3,7. (47)
o QW
Tip = Tip,. = Ky7 = (48)
ne Z

where f(;w is the multiscale window transform of = %y-y as a field variable (not
K7, the kinetic energy on windows). Clearly (s ;, + T;z'?’z) = (Tgxw n + Tko ;) by
the continuity Eq(35). It is easy to verify that botﬂaK;lv,h andTkw . are perfect transfers
using the marginalization property. Decomposit{dB) now becomes

NL = (A Qke + A, Qkw) + (Tkw.n + Tk ). (49)

In summary, the kinetic energy evolution on windawis governed by

5,KT =-V-Q, — 8§z 07 V@), +V-Q, - K7V Uy
+ [—QZw : a—i(@);"" + aa% — k;waﬁg%] —v. (Q;W%)
- a_az (@Zw%) - %ﬁ);wﬁ;w + Fxo.. + Fxo o, (50)
wheregh and Q, are defined if{39) and(40). Symbolically this is,
K7 = Ay Qko + A Qko + Txr p + Tkp o + ApQpr + A, Qpo
—by ++Fgo o+ Fgo . (51)

In Appendix Da list of these symbols and their meanings is presented.
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6. Multiscale available potential energy equation
To arrive at the multiscale available potential energy equation, take the scale win-

dow transform of the time-discretized version of EG46) and multiply it by c¢p,®
(c = g%/(p5N?)). The left hand side becomes, as before,

BTGPy = ey T Bay T = 8a AT — (AN c(8%,0,7 - 8uBy ™),

where

=3 (ww) = (“’I’) (52)

2 2N2

(constant multiplier 2 omitted) is the available potential energy at locatidn  the phase
space (corresponding to the scaled timé2a) for the windowz. Compared 13, A7, the
correction is of order4r)2, and could be significant only at small scales, as argued for the
kinetic energy case.

For the advection-related terms, the transform followed by a multiplication aift?
yields

(40) =t [ (v - B Yoy

o . e O e
= —Cp, wv : (Mp)n 7 — CPy wa_z(wp)n “

As has been explained in Sectidnwe need to collect flux-like terms. In the phase space,
these terms are:

ApQay ==V - [heep,” (Up), "1, (53)
A Qap =— [?» cp, ”(Wp), 1, (54)
wherei, = % With this flux representation, (AD) is decomposed as
(AD) = Ay Qar + A Qar — [cp, "V - (V0),” + ApQar]
- [ @+ a0 |

The two brackets as a whole represent a perfect transfer process. However, neither of them
alone does so. For physical clarity, we need to make some manipulation.
Making use of Eq(35), and denoting
ac

TSaz = Ay ™ (Wp)y wa_z’ (55)
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the above decomposition can be written as

(AD) = ApQar +A;Qar —[cp, "V - (V0),” +AnQar — lcC((pz)NwV v, )]

gy QWP
- |:C:0n —(wP) 7+ A Qa7 + TSpar — Aec ((,0 I wa—z)} + TS Az

=Ap0ar + A 04ar +Taw g,p + Taz o p + TSaw, (56)

whereA, Q 4= andA; Q 4= are, as we already know, the horizontal and vertical transports.
The other pair,

Tag.op = —cPp "V - (V0),” — AnQay + Acc((02), "V - 1,7) (57)

gy O gy QW
Tagan =~ 3@ — 8:0ap — TSag +2cc((D;7 27 ) 69
represent two perfect transfer processes, as can be easily verified with the definition in
Sectiond.
If necessaryA, Q az andTyz ,, can be further decomposed as

ApQar = AxQar + AyQavp, (59)
Taz 0,p = Taz o0 + TAz 0,p (60)

where Ay Qaz (Taz a,p) and AyQaz (Tar s,,) are given by the equation fak;, Q sz
(Taz 1) with the grad|ent operath replaced by/dx andd/dy, respectively.
Besides the above fluxes and transfers, there exists an extra term

2

TS = Aep™ (@)™ € = d(log N?)

" dz 0z
in the (AD) decomposition (recalt = g2/p3N?). This term represents an appar-
ent source/sink due to the stationary vertical shear of density, as well as an energy
transfer. )
Next consider the terr’w%. Recall thatV? is a function ofz only. It is thus immune

to the transform. So

Tl (1) e (61)

gy PO ~ N2p0 oy & nrgran
c nw (WNZ) 7 =c pnw nw_%w zzrp w_bw (62)

which is exactly the buoyancy conversion between available potential and kinetic energies
on windowe.
The diffusion terms are treated the same way as before, they are merely denoted as

Fap..=cpy " (F,2), ", (63)
Fag.h = chy ™ (Fpn), " + (AD2c(8%0,7 - 8.0,). (64)

Put all the above equations together (with the aid of notatjb8} (54) and (61)
80 AT = ApQar + A, Qpr

~ A~ T\ > Nw AN
+[=cp, "V - (Up), T — ApQar + Aec((0?), V-9, )]
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e O 5\~ O, 7
el (@0),7 = AcQay = TSag + hec | (09,7 —5 —

+TSam + pia);%,:w + Fam . + Faz i, (65)
0

or, in a symbolic form,
A,Z,U =ApQar + A, Qa7 + Taw ,p + Taw o.p + TSaw + by + Faw o + Faw p.
(66)

For a list of the meanings of these symbols, refeippendix D

7. Horizontal treatment

As in Fourier analysis, the transform coefficients of MWT contain phase information;
unlike Fourier analysis, the energies defined in Se@i@nwhich are essentially the trans-
form coefficients squared, still contain phase information. This is fundamentally the same
as what happens with the real-valued wavelet analysis, which has been well studied in the
context of fluid dynamics (e.giarge, 1992; lima and Toh, 1995

In the presence of advection, the phase information problem leads to superimposed
oscillations with high wavenumbers on the spatial distribution of obtained energetics. This
may be understood easily, following an argument in the wavelet energetic analysis of shock
waves bylima and Toh (1995While in the sampling spaéé¢he phase oscillation might not
be obvious or even ignored because of the discrete nature in time, in the spatial directions
it surfaces through a Galilean transformation. Look at the transf@ynThe characteristic
frequency isf. ~ 272 cycles over the time duration. (Recall the signals are equally sampled
on 272 points in time.) Now suppose there is a flow with constant spge@he oscillation
in time with £, is then transformed to the horizontal plane with a wavelength on the order
of ug/f.. Suppose the sampling intervalAs, the time step size for the dataset. Suppose
further the spatial grid size isx. In a numerical scheme explicit in advection (which is true
for most numerical models), it must be smaller than or equalitgug to satisfy the CFL
condition. So the oscillation has a wavenumhker- O(<-) or larger, asf, ~ . Fig. 2a
shows a typical example of the energetic term for the Iceland-Faeroe Frontal variability (cf.
Robinson et al., 1996k; LR3). Notice how the substantial energetic informatibig ( 20)
is buried in the oscillations with short wavelengths. (The time sampling intervalAs 10
here.)

The phase oscillation as kig. 2a is a technique problem deeply rooted in the nature of
localized transforms. It must be eliminated to keep the energetic terms from being blurred. In
our case, this is easy to be done. As the characteristic frequency is akkayehighest for
the signal under concern, the oscillation energy peaks at very high wavenumbers, far away
from the substantial energy on the spectrum. Except for energetics on the sub-mesoscale

3 Given a scale window, the MWT transform coefficients form a complete function space. We here refer to it as
a sampling space.
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Fig. 2. (a) The total transfer of APE from the large-scale window to the meso-scale window for the Iceland-Faeroe
Frontal variability at depth 300 m on August 21, 1993 (cf. LR3, Robinson et al., 19963),k(b) The horizontally
filtered map (units: rfs~3).

window, a horizontal scaling synthesis with a proper upper scale level (lower enough to
avoid the phase problem but higher enough to encompass all the substantial information)
will give us all what we want. As a scaling synthesis is in fact a low-pass filtering which
may also be loosely understood as a “local averaging”, we are taking a measure essentially
similar to the time averaging approachloha and Toh (1995)except that we are here
dealing with the horizontal rather than temporal directienam now onall the energetics
should be understood to Kéocally averagedl with appropriate spatial window bounds
though for notational laconispwe will keep writing them in their original forms

One thing that should be pointed out regarding the MWT is that the phase information
to be removed is always located around the highest wavenumbers on the energy spectrum.
The reasonis thatin E{¢) a scaling basis at the highest scale lgiga$ used for transforms
on all windows. This is in contrast to wavelet analyses, in which the larger the scale for
the transform, the larger the scale for the phase oscillationlife@eand Toh, 199b The
special structure of the MWT transform spectrum is very beneficial to the phase removal.
Generally no aliasing will happen in separating the substantial processes from the phase
oscillation.

8. Connection to the classical formalism

The MS-EVA can be easily connected to a classical energetics formalism, with the aid of
the MWT properties presented in Sect@i3, particularly the property of marginalization.
For kinetic energyAppendix Cshows that, when

(1) jo=0,j1 = j2(i.e., onlytwo-scale windowsre considered), and
(2) aperiodic extensioffo = 1) is employed,

Eq.(50)for o = 0 andw = 1 are reduced respectively to the mean and eddy kinetic energy
equations irHarrison and Robinson (1978)Reynolds-type energetics adapted for open
ocean problems [see Eq#.28) and (A.33). For available potential energy, the classical
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formulation (2D only) in a statistical context gives the following mean and eddy equations
(e.g.,Tennekes and Lumley, 19y2

0A _ I

gt]ean—i_ V- (VAmean = —cpV -V, (67)
0A 1 - _

;tddy Ve (YEC/O/2> = —cp'V - Vp, (68)

whereAmean= %cﬁz, Aeddy = %c(p)/z. Eqgs.(67) and (68)an be adapted for open ocean
problems by modifying the time rates of change using the approaklatrison and Robin-

son (1978)Following the same way as that for KE, these modified equations can be derived
directly from the MS-EVA APE Eq(65) under the above two assumptions.

It is of interest to notice that the multiscale energy K§8) and (65gappear in the same
form for different windows. This is in contrast to the classical Reynolds-type formalism,
where the eddy energetics are usually quite different in form from their mean counterparts.
This difference disappears if the averaging and deviating operat@%g)in68), (A.28), and
(A.33), are rewritten in terms of multiscale window transform. One might have been using
the averaging-deviating approach for years without realizing that they actually belong to a
kind of transform and synthesis.

Consequently, the classical energetic formalism is equivalent to our MS-EVA under a
two-window decomposition withjop = 0 andp = 1. The latter can be viewed as a gen-
eralization of the former for GFD processes occurring on arbitrary scale windows. The
MS-EVA capabilities, however, are not limited to this. (67) and (68) the rhs terms, or
transfers as usually interpreted, sum-toV - (pp’Vv’), which is generally not zero. That is
to say, these “transfers” are not “perfect”. They still contain some information of transport
processes. Our MS-EVA, in contrast, produces transfers on a different basis. The concept of
perfect transfer defined through transfer—transport separation allows us to make physically
consistent inference of the energy redistribution through scale windows. In this sense, the
MS-EVA has an aspect which is distinctly different from the classical formalism.

9. Interaction analysis

Different from the classical energetics, a localized energy transfer involves not only
interactions between scales, but also interactions between locations in the sampling space.
We have already seen this in the definition of perfect transfer processes. A schematic is
shown inFig. 3. The addition of sampling space interaction compounds greatly the transfer
problem, as it mingles the inter-scale interactions with transfers within the same scale
window, and as a result, useful information tends to be disguised, especially for those
processes such as instabilities. We must single out this part in order to have the substantial
dynamics up front.

In the MS-EVA, transfer terms are expressed in the form of triple products. They are all
like

T@.n) =R, " (P ", forR, p,q € Vy jp, (69)



214 X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans 38 (2005) 195-230

=

Scale
window

S.

=
?\ V P
% t k

S 2
Pk S

=
Location

Fig. 3. A schematic of the energy transfers toward a meso-scale process at loc&épicted are the transfers
from different time scales at the same location (vertical arrows), transfers from surrounding locations at the same
scale level (horizontal arrows), and transfers from different scales at different locations (dashed arrows).

a form which we calbasic transfer functioffior reference convenience. Using the repre-
sentation(9), it may be expanded as

T(w, n) = Z Z Tr(n, winyi, w1, no, w?), (70)

w1, n1,n2

where

Tr(n, winy, w1 ne, w2) =R, - [}7;1"7121,2”2@51]2(159 jz)ww], (71)

and the sums are over all the possible windows and locatfe(s, w|n1, w1;no, wo)isa
unit expressiorf the interaction amongst the triad, w; n1, wi; n2, we). It stands for the
rate of energy transferred te,(zw) from the interaction off, @) and @2, @2). We will
refer to the pairsi(1, w1) and @2, w2) as thegiving modesand (z, w) thereceiving modge
a naming convention aftéima and Toh (1995)

Theoretically, expansion of a basic transfer function in terms of unit expression allows one
totrace back to all the sources that contributes to the transfer. Practically, however, itis notan
efficient way because of the huge number of mode combinations and hence the huge number
of triads. In our problem, such a detailed analysis is not at all necesséf9) I§ modified
such that some terms are combined, the computational redundancy would be greatly reduced
whereas the physical interpretation could be even clearer. We now present the modification.

Look at the meso-scale windows(= 1) first. It is of particular importance because it
mediates between the large scales and sub-mesoscales on a spectrum. Fax, enfikkl
the decomposition

p=Dyred2(t) + pa = p 0+ Py el 2() + pit + p2 (72)
where

ps1 = p — Py re2I2(1) (73)
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and p;f is the meso-scale part pf1,

~1 ~1  a~l,0,j a~l0.]
Pt =pt =Pt = >0 plel (74)
ieAfi;z,i;én

The new interaction analysis concerns the relationship between scales and locations, instead
of between triads. The advantage of this is that we do not have to resort to those triad
modes, which may not have physical correspondence in the large-scale window, to make
interpretation. Note not aryy;’%ﬁ*jz can convincingly characterize 1(r) at locatiom. But

in this context, as the basis functi¢ﬁ|’j2(t) we choose is a very localized one (localization
order delimited, see L02), we expect the remova,b;ﬁqS,‘i’j2 will effectively (though not

totally) eliminate fromp™* the contribution from location. This has been evidenced in the

example of of a meridional velocity seriegFig. 4), where a = 384,11:11 is only about 6%

(17299} of the v™* in magnitude, while at other locatiomsandv™;! are almost the same

(fluctuations negligible aroung). Therefore, one may practically;: albeit not perfectly, take
ﬁ;lqbﬁ’jz as the meso-scale partmivith contribution from locatiom only (corresponding to
t =27 J2p), andp:11 the part from all locations other thaunNotep;1 has am-dependence.
For notational clarity, it is suppressed henceforth.

Likewise, for fieldg € V, j,, it can also be decomposed as

1=q°+q"+47 (75)
a=q"°+5"¢2"2 +q "+ 42 (76)
with interpretation analogous to that p:rjll for the starred term. The decompositions for

p andq yield an analysis of the basic transfer functid(d, n) = 7%;1 -(pg);* into an
interaction matrix, which is shown ifiable 1 In this matrix, L stands for large-scale
window and S for sub-mesoscale window (all locationsy.iMused to denote the meso-
scale contribution from location, while M, signifies the meso-scale contributionther

than that location. Among these interactions,M/, and M.—M, contribute to7'(1, n)

from the same scale window (meso-scale, without inter-scale transfers being involved. We
may sub-total all the resulting 16 terms into 5 more meaningful terms:

T T I D | 0 ~1~1
Tt =R, (P00 + a4, (p 08 ) + (00,
Al 22 ~ ~1 1 <o\~1
+ Dy @ g0 + (0 g0

S 1 ool | Lo i~
=R, - [(p™0 O + (p~1q~O), "t + (p~0g~ 1) Y (77)

— ——

O N O R e W IO Py
Tt =R, [y 00 a2 + (a2 + 3, (020 ),
+ (P2 D+ (072071

~~1 1 <o\~ o o~ o T\~
=R, (P17 + (p207 ) + (p27 )Y (78)
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Fig. 4. A typical time series of (in cm/s) from the Iceland-Faeroe Frontal variability simulation (point (35, 43,

2). Refer toFig. 2 for the location) and its derived series (cf. LR3). There dke=21024 data points, and scale
windows are chosen such that= 0 andj; = 4. The original series and its large-scale reconstruction® are

shown in (a), and the meso-scale and sub-mesoscale are plotted in (b) and (c) respectively. Also plotted in (b) is
the “starred” series (dottealz);ll for locationn = 384. (d) is the close-up of (b) around= 384. Apparentlyp;l1

is at least one order smaller thatt! in size at that point, while these two are practically the same at other points.
Locationn corresponds to a scaled time= 2-/2n (here forecast day 8).

021 _ »~1 2 <o\~1 0, ~o\~1
T, =R, -[(p~2q0)," + (r™°¢~%),"] (79)
151 _ A~ [anian1g 02y270
el R e (R (80)
1 — - .
1-1 5 1, ~2\~L | A~ ~2 40,2\~
Tother—m = Rn ’ [(p lq*l )n + 4, (p*l n )n ] (81)
Table 1 -
Interaction matrix for basic transfer functidi(1, n) = R, - (pg);*
p° Py ten’? it P2
q° L-L L-M,, LM, L-S
anten’ Mn—L Mn—Mp Mn—M., Mn—S
a5 M,—L M,—Mp M.—M, M,.-S

q? S-L S-M S-M, s-S




X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans 38 (2005) 195-23@17

If necessaryZ, 2>} andTh -1 may also be combined to one term. The result is denoted
asT~1.

The physical interpretations of above five terms are embedded in the naming convention
of the superscripts, which reveals how energy is transferred to modgft@m other scales.
Specifically, T,?*l and Tf”l are transfer rates from windows 0 and 1, respectively, and
79921 is the contribution from the window O-window 2 interaction over the meso-scale
range. The last two termg > and 751 sum up to7;}~1, which represents the part
of transfer from the same window.

Above are the interaction analysis f6¢1, n). Using the same technique, one can obtain
a similar analysis fof'(0, n) andT'(2, n). The results are supplied Appendix B

What merits mentioning is that different analyses may be obtained by making different
sub-grouping for Eq(70). The rule of thumb here is to try to avoid those starred terms as
in Eq.(81), which makes the major overhead in computation (in terms of either memory or
CPU usage). In the above analyses, say the meso-scale analysis, if a whole perfect transfer
is calculated, the sum of those terms in the fornT:gf> ! will vanish by the definition of
perfect transfer processes. This also implies that the sum of those transfer functions in the
form of 751 will be equal to the sum of terms in the same form but with all the stars
dropped. Hence in performing interaction analysis for a perfect transfer process, we may
simply ignore the stars for the corresponding terms. But if it is an arbitrary transfer term
which does not necessarily represent a perfect transfer procestyg.9,the starred-term-
caused heavy computational overhead will still be a problem. !

In practice, this overhead may be avoided under certain circumstances. Recall that we
have built a highly localized scaling basis functipriFor anyp € V,, ;,, it yields a function

()2 7%(r) with an effective support of the order of the grid size. The large- or meso-
scale transform of this function is thence negligible, shgulde smaller tharj, by some
considerable number (3 is enough). Only when it is in the sub-mesoscale window need
we really compute the starred term. An example with a typical time Sﬂie\sﬂnﬂu is

plotted inFig. 5. Apparently, for the large-scale and meso-scale czi%”é’:{m/)ﬁ’jz);o and
P ugd’?) 1 (red circles) are very small and henqﬁ%);o and (o ;'u);* can be
approximated by,c(/”o\u);o and (~1u)>1, respectively. This approximation fails only in

n

the sub-mesoscale case, where the corresponding two parts are of the same order.

It is of interest to give an estimation of the relative importance of all these interaction
terms obtained thus far. For the mesoscale transfer funétft), T,?@2”1 is generally
not significant (compared to other terms). This is because, on a spectrum, if two processes
are far away from each other (as is the case for large scale and sub-mesoscale), they are
usually separable and the interaction are accordingly very weak. Even if there exists some
interaction, the spawned new processes generally stay in their original windows, seldom
going into between. Apart frorﬁ“,?@z*l, all the others are of comparable sizes, though
more often than nof%~! dominates the rest (e.drig. 60).

For the large-scale window, things are a little different. This time it is t6fm° that is
not significant, with the same reason as above. But fe}‘ﬁ%—’o isin general not negligible.
In this window, the dominant energy transfer is usually not from other scales, but from other
locations at the same scale level. Mathematically this is to?%ﬁ’éo usually dominates

—n
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Fig. 5. An example showing relative importance of the decomposed termdgfion) ,. Data source: same as that
in Flg 4(zonal velocity only). Units: kg/r’hs Left: (p u)”0 (heavy solid line) ané“o(udbf’, ’2) (circle); middle:
(p u)>t (heavy solid line) and‘)“l(mp,, 2)~1 (circle); right: 03 u)“2 (heavy solid line) angh; 2(ug?’2);2

(circle). Obviously, the,ﬁ*,,, u),™ in the decompositionp(‘wu)” (p;}”u U DY (ugs ’2)”" can be well
approximated byp{wwu);w for windowsw = 0, 1.

the other terms. This is understandable since a large-scale feature results from interactions
with modes covering a large range of location on the time series. If each location contributes
even a little bit, the grand total could be huge. This fact is seen in the exanipig. iéa.

By the same argument as above, within the sub-mesoscale window, the dominant term
is 712, But 79%1~2 could be of some importance also. In comparison to theseffo?
andTZ—>2 T2>2 | 72-2 are not significant.

othern n—n

Tio n (M%) Tein (

50 —
>
—1P
-2
-3 -6
2 4 6 8 10 2 4 6 8 10
(a) Forecast day (b) Forecast day

Fig. 6. An example showing the relative importance of analytical ternfef;, at 10 (time) locations. The data
source and parameter choice are the same as tifag.of. Here the constant factor2has been multiplied. (a)
Analysis ofTo , (thick solid): Tlﬂo (thick dashed)TbO (solid), andTO%o (dashed)rl@b0 is also shown but
unnoticeable. (b) Analysis de1 i (thlck solid): T‘H1 (thlck dashed)T" Iz(j’hl (solid), andTl"1 (dashed)r 221

is also shown but unnoticeable. o
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We finish up this section with two observationsFifj. 6. (1) During the forecast days,
Txo and Tlﬁ0 are almost opposite in sign. That is to say, the transfer term without

interaction anaIyS|s could be misleading in inter-scale energy transfer study. (2) The transfer
rates change with time continuously. Analyses in a global time framework apparently do
not work here, as application of a global analysis basically eliminates the time structure.
This from one aspect demonstrates the advantage of MS-EVA in diagnosing real problems.

10. Process classification and energetic scenario

From the above analysis, energetic processes for a geophysical fluid system can be gen-
erally classified into the following four categories: transport, perfect transfer, buoyancy con-
version, and dissipation/diffusion. (The apparent source/sink in the multiscale APE equation
is usually orders smaller than other terms and hence is negligible.) Dissipation/diffusion is
beyond the scope of this paper. All the remaining categories belong to some “conservative”
processes. Transport vanishes if integrated over a closed domain; perfect transfer summa-
rizes to zero over scale windows followed by a marginalization in the sampling space;
buoyancy conversion serves as a protocol between the two types of energy.

The energetic scenario is now clear. If a system is viewed as defined in a space which
includes physical space, phase space, and the space of energy type, then transport, transfer
and buoyancy conversion are three mechanisms that redistribute energy through this super
space. In a two-window decomposition, communication between the windows are achieved
via T%‘)l and TE“”. (HereT stands for total transfer, and the superscriptQ for either
0 — 1or 1— 0.) the two types of energy are converted on each window; while transport
brings every pointto connection inthe physical space. The whole scenariois like an energetic
cycle, which is pictorially presented in the left partkfy. 7 (with all the sub-mesoscale
window-related arrows dropped), where arrows are utilized to indicate energy flows, and
box and discs for the KE and APE, respectively.

When the number of windows increase from 2 to 3, the scenario of energetic processes
becomes much more complex. Besides the addition of a sub-mesoscale window, and the
corresponding transports, conversions, and the window 1-2 and 0-2 transfers, another pro-
cess appears. Schematizedrig. 7by dashed arrows, it is a transfer to a window from the
interaction between another two windows. In traditional jargon, it is a “non-local” transfer,
i.e., a transfer between two windows which are not adjacent in the phase space. We do not
adopted this language as by “local” in this paper we refer to a physical space context. If the
number of windows increases, these “nonlocal” transfers will compound the problem very
much, and as a result, the complexity of the energetic scenario will increase exponentially.
In a sense, this is one of the reasons why an eddy decomposition is preferred to a wave
decomposition for multiscale energy study.

11. Multiscale enstrophy equation

Vorticity dynamics is an integral part of the MS-EVA. In this section we develop the
laws for multiscale enstrophy evolution, which are derived from the vorticity equation.
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Fig. 7. A schematic of the multiscale energetics for locatioArrows are used to indicate the energy flow, both

in the physical space and phase space, and labeled over these arrows are the processes associated with the flow.
The symbols adopted are the same as those listddbie A.2 except that transport and transfer are the total
processes. Interaction analyses are indicated in the superscriptsTefetires, whose interpretation is referred to
Section9. For clarity, transfers from the same window are not shown. From this diagram, we see that transports
(AQkw, AQpw, AQ 4=, for windowse = 0, 1, 2) occur between different locations in physical space, while
transfers (thd-terms) mediate between scale windows in phase space. The connection between the two types of
energy is established through buoyancy conversion (positive if in the direction as indicated in the parenthesis),
which invokes neither scale—scale interactions nor location—location energy exchange.

The equation for vorticity = k - V A v is obtained by crossing the momentum EcB)
followed by a dot product witlk,
¢ av
5:K~VA11)8—Z—K-VA[(f+§)KAg+F¢,2+F;,h, (82)
whereF, ; and F;;, denote respectively the vertical and horizontal diffusion. Making use
of the continuity Eq(14), we get,

% _ g, _ 0 w W
5=V (v¢) E)Z(wz) ﬂ+(f+c) o +k 5z N VW o+ Fon (83)

0 O ) Vv
Here 8 = 9f/dy is a constant if 88-plane is approximation is assumed. But in general, it
does not need to be so. In €§3), there are five mechanisms that contribute to the change of
relative vorticity¢ (e.g.,Spall, 1989. Apparently, term (1) is the advection gby the flow,
and term (V) the diffusiong-Effect comes into play through term (11). It is the advection
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of planetary vorticityf by meridional velocityv. Vortex tubes may stretch or shrink. The
vorticity gain or loss due to stretching or shrinking is represented in term (I11). Vortex tube
may also tilt. Term (1V) results from such a mechanism.

Enstrophy is théenergy” of vorticity, a positive measure of rotation. It is the square of
vorticity: Z = %{2. Following the same practice for multiscale energies, the enstrophy on
scale windowe at time locatiom is defined as (factor/2 omitted for brevity)

=@ (84

The evolution ofZ7 is derived from Eq(83).

As before, first discretize the only time derivative term in BR), 3/0t, 10 8,C. Take a
multiscale transform of the resulting equation and then multiply it 9. The left hand
side resultsin the eVOIUtIQ?a,Zw plus a correction term which is of the ord&r?, At being
the time spacing of the series. Merging the correction term into the horizontal diffusion, we
get an equation

o oy AWOTT ~ogm w\ "
zZ, =-¢, [V@{)n + —(wa{) } -Bi, + Ty < w)
74 9z /,

(AD)

—_— ~w —_— ~w
+2;w(€a_w) +2;:wk<a—y/\vw> +FZW‘Z+Fth
iz /, a7 . " ne
Again, Fzz . andFzz , here are just symbolic representations of the vertical and horizontal
diffusions. Following the practice in deriving the APE equation, the process represented by
the advection-related terms (AD) can be decomposed into a sum of transport processes and
transfer processes. Denote

ApQzr ==V - [h (VD) 71, (85)
0 ST R\~
A;Qzr = —a—z[kcé,, (wg), ] (86)
then itis

AD = AyQzo + A Qzo + [ Ay Qzo — 5,7V - (V0), ™ + Ae (gZ)”wv ]

A(w é“)””’ aﬁf"_’}

[ A Qzm — 77— + (D)) p”

=AMp0z7 + A 0z7 + TZ;”,ah; +Tz7.0.00

whereA, Qz» and A, Q z= represent the horizontal and vertical transports, Bad;, .,
Tz .. the transfer rates for two distinct processes. It is easy to prove that both of these
processes are perfect transfers. Note the multiscale continuit{8Bphas been used in
obtaining the above form of decomposition. If necessayQ z= and Tz= 3, . may be
further decomposed into contributions fromandy directions, respectively.
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The enstrophy equation now becomes, after some algebraic manipulation,
2, = MnQzp + A Qzp +[-AnQzp — 7V - (W), + (6D, 7V - 4,7

dwd)” ~ T
)\‘. 2 w n
T (89 e

~w

e AT . ow

+ [—AZQZ,? -0

~w
. v
+777k - (8—; A Vw) + Fzo , + Fzo ). (87)

n

Or, symbolically,
2] = MiQzp + A Qs + Tap oc + Tap oc + Szp 5+ Sz7. v
+TSz7 vy + TSzo gt + Fzo  + Fzo . (88)

The meanings of these symbols are tabulatejgpendix D

Each term of Eq(88) has a corresponding physical interpretation. We have known
that A, Qz» andA;Qz» are horizontal and vertical transports Bf’, respectively, and
Tzw 5,0 andTzw 5. . transfer rates for two perfect transfer processes.i#f horizontally
and vertically a constant, thefx= 5 . and7z= 5, Sum up to zero. We have also explained
Fzo .+ Fzo ), represents the diffusion process. Among the rest teSms g andSzo rv.y
stand for two sources/sinks &f due tog-effect and vortex stretching, afé z= ,v., and
TS z= 1y transfer as well as generate/destroy enstrophy. Processes cannot be well separated
for them. In a 2D system, bothS z= vy and7S z= iy vanish. As a result, the multiscale
enstrophy equation is expected to be more useful for a plane flow than for a 3D flow.

12. Summary and discussion

A new methodologymultiscale energy and vorticity analysisas been developed to
investigate the inference of fundamental processes from real oceanic or atmospheric data for
complex dynamics which are nonlinear, time and space intermittent, and involve multiscale
interactions. Multiscale energy and enstrophy equations have been derived, interpreted, and
compared to the energetics in classical formalism.

The MS-EVA is based on a localized orthogonal complementary subspace decomposi-
tion. It is formulated with the multiscale window transform, which is constructed to cope
with the problem between localization and multiscale representiitve. concept of scale
and scale window is introduced, and energy and enstrophy evolutions are then formulated for
the large-scale, meso-scale, and sub-mesoscale windows. The formulation is principally in
time and hence time scale window, but with a treatment in the horizontal dimension. We em-
phasize that, before physically interpretatithe final energetics should be multiplied by a

4 In the classical framework, multiscale energy does not have location identity of the dimension (time or space)
to which the multiscale decomposition is performed.
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constant factoR’2, and horizontally filtered with a 2D largsecale window synthesié/hen
the large-scale window bourygd = 0, and a periodic extension scherpe<£ 1) is adopted,
the multiscale energy Eq$50) and (65)in a two-window decomposition are reduced to the
mean and eddy energy equations in a classical framework. In other words, our MS-EVA is a
generalization of the classical energetics formalism to scale windows for generic purposes.
We have paid particular attention to the separation of transfers from the energetics re-
sulting from nonlinearity. The separation is made possible by looking for a special type
of process, the so-called perfect transfer. A perfect transfer process carries energy through
scale windows, but does not generate nor destroy energy as a whole in the system.
Perfect transfer terms can be further decomposed to unravel the complicated window-
window interactions. This is the so-called interaction analysis. Given a transfer function
T, an interaction analysis results in many interaction terms, which can be cast into the
following four groups:

w1 wy—>w w1Dwr—>w w—>w
7?1 , T2 , 7?1 2 , T ,

each characteristic of an interaction process. Here superserigt®, 1, 2 stand for large-,
meso-, and sub-meso-scale windows, respectivelyzang (@ + 1) mod 3,2 = (w +
2) mod 3. Explicit expressions for these functions are given in &39—(80)

By collecting the MS-EVA terms, energetic processes have been classified into four cate-
gories: transport, perfect transfer, buoyancy conversion, and dissipation/diffusion processes.
Transport vanishes if integrated over a closed physical space; buoyancy conversion medi-
ates between KE and APE on each individual window; while perfect transfer acts merely to
redistribute energy between scale windows. The whole scenario is like a complex cycle, as
shown inFig. 7. These “conservative mechanisms” can essentially make energy reach any-
where in the super space formed with physical space, phase space, and space of energy type.
Itis not unreasonable to conjecture that, many patterns generated in geophysical fluid flows,
complex as they might appear to be, could be a consequence of these energy redistributions.

Our MS-EVA therefore contains energetic information which is fundamental to GFD
dynamics. It is expected to provide a useful platform for understanding the complexity of
the fluids in which all life on Earth occurs. Direct applications may be set up for investigating
the processes of turbulence, wave-current and wave-wave interaction, and the stability for
infinite dimensional systems. In the sequels to this paper, we will show how this MS-EVA
can be adapted to study a more concrete GFD problem. An avenue to application will be
established for localized stability analysis (LR2), and two benchmark stability models will
be utilized for validation. In another study (LR3), this methodology will be applied to a real
problem to demonstrate how process inference is made easy with otherwise a very intricate
dynamical system.
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Appendix A. Correction to the time derivative term

We have shown in Sectidithat there exists a correction term in the formulas with time
derivatives. For a kinetic equation, this formula is
8n Kn - (At)2(352\zn . Sngn)» (Al)
® ©)

where (C) is the correction term. Scale superscripts are omitted here since we do not want
to limit the discussion to any particular scale window. Let’s first do some nondimensional
analysis so that a comparison is possible. Sgalith U, t with T, then

U? U U U?
Term ()~ —,  Term (C)~ (At)zﬁ = (At)zﬁ.

This enables us to evaluate the weight of (C) relative to (K):

Term (C) _ (An’U?/T3 (At 2
Term (K) vzt (?) '

Apparently, this ratio will become significant only wh&n~ At, i.e., when the time scale
is of the time step size. In our MS-EVA formulation, the correction term (C) is hence not

« 10" Large-scale x 107'° Meso-scale x 10”"Sub-mesoscale
- 5

oW

x -5
0 500 1000 0 500 1000 0 500 1000
n n n

Fig. A.1. & (thick solid) and its correction term (dashed) for the large-scale (left), meso-scale (middle), and
sub-mesoscale (right) kinetic energy equations. Data source and parameter choice are the same &ghése of
(units in ?/s3; factor 22 not multiplied).
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significant for both large-scale and meso-scale equatitgsA.1confirms this conclusion.

The correction (dashed line) is so small in either the left or middle plots that it is totally
negligible. Only in the sub-mesoscale window can its effect be seen, which, as argued
before, might be parameterized into the dissipation/diffusion.

Appendix B. Interaction analysis for T'(0, rn) and T'(2, n)

Using the technique same as that 1{d, ») in Section9, we obtain a similar analysis
for T(0, n):

A0~ — — — —> —
TO.n) =R, (P2, =T, + 1770+ ;9270 4+ 10204 1000 . (A2)
where
— '~~0 1 1\~ 1 <O\~ 0 o1\~
70 = R, 0 [(p~ g 1)y + (7719700 + (p~0 1) ] (A.3)
ANO 0 TN~ 0 <o\~ ~2 ~
120 = R [(p 0020 + (02472 + (7~ 20);° (A.4)
139220 = R0 (5724790 + (p71g72); ) (A5)
'\NO — 20
0 =R, (9706, %077, ] (A.6)
N A0 TG0 A0 | A~ D 02\~
ng)the?%n :Rn : [(p Oq 0*0)}10+qn 0(p O*O(pg jz)n O]’ (A7)
and7(2, n):
A2 — —
T@,n) =R, -(pg)2=T>"2 4+ 1>2 4 109122 7222 7202 (A.8)
where
I\N2 ~ = = ~ = =
1072 = R, 2 [(p~0g )2 + (12470072 + (p0q2); 2 (A.9)
T2 = Ry (g 2,2 + (g 02+ (02D (A.10)
2 A2 o Sy~ T o~
T2 = R (0% )2 + (91 ™0),2 (A.11)
2~2
22 = R 200, ] (A.12)
— ~~2 f\w ~ ~
T02thezl'~>n = Rn : [(p Zq*22 n nZ(P ¢S ]2) 2] (A13)
In these analyseg,.0 andp,. are defined as
pao = p — Py 082 7(r), (A.14)
Paz = p — Py 20872 (0). (A.15)

The physical meaning of the interaction terms is embedded in these mnemonic notations.
In the superscripts, arrows signify the directions of energy transfer and the numbers 0-2
represent the large-scale, meso-scale, and sub-mesoscale windows, respectively.
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Appendix C. Connection between the MS-EVA KE equations and the mean and
eddy KE equations in a classical Reynolds formalism

To connect our MS-EVA to the classical energetic formulation, rewrite(5). (dissi-
pation omitted) as
cow (W7 U
an'(g>n Zynw'[_v'uy)nw_a_z(wy)nw}
0]
+ ApQpr + A;Qpr — by, (A.16)
@

We want to see what this equation reduces tg;iE j»> (that is to say, onlyjwo-scale
windowsare considered)jp = 0, and gperiodic extensioins employed.

First consider the large scale windew= 0. Letq be any field variabley, v, w, or P).
A two-scale window decomposition means

g=q"+q" (A.17)

With the choice of zergjp and periodic extension, we know from the MWT properties
(see Sectior2.3) that¢™0 is constant in time and is equal goor 2/2/230 in magnitude,
that is,

¢P=q=2225°  ¢r=q-q=4. (A.18)
Hence

@,°=(@9),°=¢"0=27%1% (A.19)

@)% =@,° =0 (A.20)

Substitutingv andw for theq in (A.17), the velocity field is decomposedas= v + V/,
andw = w + w'. Let Kmean= %\_7 v. The equivalence between the large-scale transform
and duration average allows an expression of the large-scale kinetic dagigyerms of
Kmean In fact,

—n —n

(1 1_ _
K}? =22 (—VNO . ONO) = E! V= Kmean (AZl)

Note here we have taken into account the multipliér Phese facts are now used to simplify
the term () of Eq. (A.16). With the two-scale decomposition, the dyad/f after transform
is expanded as

(2% SR (V2) I (VAV) Wl (VZAY) e Y (V) (A.22)

@), =, + (V'v),°. (A23)
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Likewise,
~0 _ —o~0 —u\~0
(@v),” = w¥,” + (w'V),". (A.24)

These allow terml{ to be written as
— 9 —
ANO ~0 ~~0 A~0 ~0 ~0
=52 |-V @5% - @50 +5° |-V @), —a—z<w’y’)n}

=272 {—V - (VK mean — a_aZ(EKmear‘) +Vv- |: V- (vv) - (w V/):“

=2 {—V - (VKmean — a_az(lszear‘) +V-Vs- l} ; (A.25)
where
V3=1—+j3+k3,
x  =dy 0z
and

) @) ()
T=| @) —() —(w) |. (A.26)

_(w/u/) _(w/ v/) _(w/w/)

For term (1), it is equal to, in the present setting,
; 1 — 10 — -
(1) =270 {——V-(P@— = 2 (Pw) - iwp.} (A.27)
£0 00 0z 0

Substitute () and (I ) back to Eq(A.16). Considering that the left hand side is now® -

(i—%) we have, with the common factor 2 cancelled out,

_ [ov _ 1 = 10, -
v (—) — V. @K") — (K" ~ =V - (PD) - — - (Pi)
ot 0z £0 00 0Z
— iw,o +V-V3- T (A.28)
ro

This is exactly whatHarrison and Robinson (1978gve obtained for the mean kinetic
energy, withT the Reynolds stress tensor in their formulation.

Above is about the large-scale energetics. For the meso-scale wirglew1(), things
are more complicated. In order to make E4.16) comparable to the classical eddy KE
equation, justjo = 0 and periodic extension are not enough, as now there no longer exists
for variablep a linear relation be’[weep,;”1 and p’. We have to marginalizA.16) to the
physical space to fulfill this mission. In this particular case, the marginalization equality
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(11)in Section2.3is simply
Mapy e = pq, (A.29)

since here the deviation operation (prime) and the meso-scale synthesis operator are iden-
tical. Marginalization 0{A.16) with = = 1 yields

v\’ _ a P’
v A ==V -V (W) -V .—(wv)y -V -V|{—]. (A.30)
ot - 0z 00
()

" m’)
Itis easy to show, as we did before,

P’ ad P -
mH=v. <y’—> + —(w’—) + 2wy (A.31)
£0 0z £0 £0
The other two terms sum up to
R4 o[ V-V -
N+ =vV-(v—= )+ —|(w=—=)+VV W+ V. =, (A.32)
2 0z 2 0z
Therefore,
v\’ Vv 9 VeV P’
V.|=)=-V-(v ——(w -V-|lv—
= \or - 2 9z 2 = p0
0 P’ I —
— —<w’—> — iw’,o’ —VV VvV —Vu . —. (A.33)
9z \  po PO 0z

Again, this is exactly the eddy KE equation obtainecHarrison and Robinson (197.8)

Appendix D. Glossary

Tables A.1-A.3
Table A.1
General symbols
AT Available potential energy on window at time 27725
Jo» J1, J2 Upper bounds of scale level for the three scale windows
K7 Kinetic energy on windowo at time 27725
Vo, jo Direct sum of the three scale windows.
o Window index ¢z = 0, 1, 2 for large-scale, meso-scale, and sub-mesoscale windows, respectively)
Zz7 Enstrophy on windowe at time 27725
2 Multiscale window transform of variable
[ Multiscale window synthesis of variabte
z Duration average of variable

ﬁ‘j Periodized scaling basis function at leyel

ﬁ'j Periodized wavelet basis function at leyel
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Table A.2

Symbols for the multiscale energy equations (timeé2a, window =)

Kinetic energy (KE) Available potential energy (APE)

K” Time rate of change of KE AT Time rate of change of APE

Ay Qo Horizontal KE advective working ApQaw Horizontal APE advective working rate
rate

A Qko Vertical KE advective working A Qur Vertical APE advective working rate
rate

Tk 4 Rate of KE transfer due tothe hor-  Tyo 5, , Rate of APE transfer due to the horizontal
izontal flow gradient density

To . Rate of KE transfer due tothe ver- ~ Tyw 5 , Rate of APE transfer due to the vertical
tical flow gradient density

—b7 Rate of buoyancy conversion by Rate of inverse buoyancy conversion

Ay Qpr Horizontal pressure working rate TS g Rate of an imperfect APE transfer due to

the stationary shear of the density profile

A Qpm Vertical pressure working rate Fao Horizontal diffusion

Fko . Vertical dissipation Fyo . Vertical diffusion

Fgo Horizontal dissipation

Table A.3

Symbols for the multiscale enstrophy equation (timé2a, window =)

z7 Time rate of change of on windowz at time 2772,

ApQzw Horizontal transport rate

A Qzo Vertical transport rate

Tzo 3,¢ Rate of enstrophy transfer due to the horizontal variation of

Tzw 5. Rate of enstrophy transfer due to the vertical variatiog of

Szo g B-Effect-caused source/sink

Szo fvy Source/sink of enstrophy due to horizontal divergence

TSz vy Rate ofZ transfer and generation due to rotation-divergence correlation

TSz it Rate of Z transfer and generation due to the vortex tube tilting

Fzo p Horizontal diffusion rate

Fzo . Vertical diffusion rate
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