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MULTISCALE WINDOW TRANSFORM∗

X. SAN LIANG† AND DONALD G. M. ANDERSON‡

Abstract. A new analysis apparatus, the multiscale window transform (MWT), is developed
to generalize the classical mean-eddy decomposition (MED) in fluid mechanics to include three or
more ranges of scales, and to ensure a faithful representation of localized energy processes. The
development begins with the introduction of a sequence of finite-dimensional subspaces of L2[0, 1],
{V�,j}0≤j≤j2 , based on a multiresolution analysis of L2(R). All the V�,j are sampling spaces, i.e.,
spaces spanned by some translation invariant basis. The upper bound of the index of scale level,
j2, is prescribed in accordance with the signal of concern. Within V�,j2 , the concepts of large-
scale, mesoscale, and submesoscale windows are introduced, each being a subspace of V�,j2 and
containing exclusively a range of scales. A transform-reconstruction pair is constructed on each
window, representing the features for the corresponding range of scales. The resulting MWT has
several useful properties. Of particular importance is a property of marginalization, which allows
for a simple representation of energy on specified windows and localizations. The MWT has been
connected to other existing analysis techniques: The classical MED turns out to be a particular
case, with averaging acting as both a transform and a reconstruction in the MWT framework; it has
also been compared with wavelet analysis and the Hilbert–Huang transform. As a realization, we
show how an MWT is built with an orthonormalized cubic spline system. Computational techniques
leading to a fast transform scheme are also presented. The MWT is validated with two examples,
and its applications in the study of hydrodynamic stability analysis (fully nonlinear) are discussed
and exemplified.
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1. Introduction. Mean-eddy decomposition (MED) is a technique used exten-
sively in the studies of multiscale interactive processes in fluid flows such as the mean-
eddy interaction as schematized in Figure 1. It is also called Reynolds decomposition
in the context of turbulence research, which forms the basis for the renowned Reynolds
equations. This technique, however, encounters difficulties when the processes under
consideration are inhomogeneous and/or nonstationary, as will be clear in the follow-
ing. The purpose of this study is to generalize the MED to a new apparatus, the
multiscale window transform (MWT), to overcome these difficulties. In a follow-up
paper (see section 10), we will see that the complicated mean-eddy-turbulence inter-
actions in fluid flows can be quantitatively expressed in a simple formula in terms of
the MWT.

The basic idea of the MED can be easily elucidated with a one-dimensional (1D)

signal x(t), t ∈ [0, 1]: One takes the mean x̄ =
∫ 1

0
x(t) dt and then subtracts x̄ from x to

obtain the fluctuation x′ = x− x̄, or eddy field. The corresponding energies/variances
are x̄2 and x′2, respectively. Notice the overbar or domain average performed on x′2.

∗Received by the editors September 3, 2006; accepted for publication (in revised form) March 12,
2007; published electronically June 1, 2007. This work was supported by the Office of Naval Research
under grant N00014-02-1-0989 to Harvard University.

http://www.siam.org/journals/mms/6-2/66895.html
†School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. Cur-

rent address: Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012
(sanliang@courant.nyu.edu).

‡School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

437



438 X. SAN LIANG AND DONALD G. M. ANDERSON

MEAN

EDDY

Fig. 1. A schematic of the multiscale interaction in fluid flows. Central to the problem is the
transfer of energy between the designated events.

This invokes a severe problem for the MED. It eliminates the structure of the eddy
field without differentiating one location from another location on [0, 1]. While this
can be used to characterize eddy processes with homogeneity or stationarity in t, real
fluid processes are by nature neither homogeneous nor stationary. The emergence of
turbulent spots as illustrated in Figure 2(a) is a good example. A turbulent spot is
a highly intermittent event, defined on a localized domain bearing irregularity and
variability. Figure 2(b) is a 1D abstraction of the problem. One sees that all the events
are limited within a very narrow domain. If an averaging is performed, one obtains
an eddy energy evenly distributed everywhere on [0, 1]. This is not physically true,
as we see clearly that only a burst of eddy energy exists within that limited region,
outside which nothing occurs. Another problem for the MED is that the background
may be variable (nonstationary background, as it is usually called), while an MED
mean is a constant. As shown in Figure 2(c), if the basic profile is a sloped line,1 even
though no perturbation exists, the MED will give an eddy energy positive everywhere
except at one point in the middle. Obviously, the classical MED is inadequate for
fluid dynamics studies under generic circumstances.
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Fig. 2. (a) schematic of the emergence of a turbulent spot (see, for example, Gad-el-Hak,
Blackwelder, and Riley (1981); (b) an impulse within a calm fluid; (c) a sloping straight line. The
abscissa of (b) and (c) could be time or any dimension of space, while the ordinate is some state
variable.

Different approaches have been sought to remedy this inadequacy. For example,
people often use piecewise or subdomain averaging instead of global averaging to
gain local information. This in general does not help, as is easily seen with the aid
of Figure 2(c): There is always eddy energy through [0, 1], unless the subdomains
are infinitely small, which then invokes the issue of inadequate alteration to scale.
Besides, localized events tend to appear on varying and irregular geometry, making

1For example, if the ordinate represents pressure and abscissa longitude, then the distribution of
Figure 2(c) implies a uniform meridional geostrophic flow (see Pedlosky (1979)).
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it practically impossible to trace out the right subdomain.
A more sophisticated approach is filtering (e.g., Gaussian filters), a widely em-

ployed technique these days in turbulence research. Actually, what we will be building
is also related to filters. But, not just any filter will work. Take the schematized de-
composition in Figure 1 as an example. Using some filtering (or other) technique, it
is always easy to obtain the reconstructions on different scale ranges for the represen-
tations of the mean, eddy, and turbulent processes. However, the central issue here
is not the reconstructions themselves but the interactions, which are characterized by
the energy transferred between these reconstructions. A key question for fluid physics
studies is thus, What is the energy of a reconstruction? Or, given a filter, how is
energy represented?

Historically, this question has been mostly overlooked, probably because this is
not a question in the MED. For a decomposition x = x̄ + x′, we know that the
eddy energy is x′2 (constant factors omitted). Look at the overbar (averaging) of
x′2. That is how eddy energy is represented in the MED. (In section 4, we will see
that the MED is very special in that its transform and reconstruction are the same,
making this simple representation possible.) If the mean is replaced by a low pass
filtered signal, the residue is usually taken as the eddy field. In this case, what is
the eddy energy? How should the overbar or averaging be changed to have energy
locally represented? This seemingly trivial question is not easy at all. In fact, one had
not seen hope for its solution until wavelets and filter banks were recently connected
(see Strang and Nguyen (1997)). (Practically, it is not uncommon in engineering
literature that the simple square of a reconstruction is taken as the local energy;
of course, this is conceptually wrong.) This difficulty may help to explain why the
subdomain/subinterval averaging, though its deficiency as illustrated above is well
known, is still in use, particularly in oceanographic and atmospheric research, while
all kinds of sophisticated filters are readily available.

We proceed to build a physically consistent decomposition technique. Specifically,
we need to build a decomposition capable of representing events, characterized by their
corresponding energies, localized in space and/or time, out of a variable background,
as schematized in Figure 2(b) and (c). In many cases, extension of the two-component
MED to include three or more components is needed. An example is the mean-eddy-
turbulence decomposition as one may use in studying the energetics of the inertial
range of a turbulent flow. Putting all these desiderata together, in a more formal
language, we need to generalize the MED so that

(1) the decomposition partitions a Hilbert space into orthogonal subspaces (as
many as desired), each containing functions exclusively with a certain range
of scales;

(2) each subspace is a sampling space, i.e., a closed subspace in which all the
functions can be expanded with respect to a translation invariant orthonormal
basis;

(3) energy for each subspace is represented locally.
In item (2), the sampling space requirement ensures the localization as needed. Note
the orthogonality between the subspaces and the orthonormality of the translationally
invariant bases. As we mentioned above, they are critical. Only with an orthonormal
basis can the notion of energy be introduced, and only with an orthogonal decompo-
sition can the total energy be conserved. We insist on this because we are to use the
new technique to explore physical laws, not just data analysis. As the resulting sub-
spaces contain exclusively different scale ranges, we call them scale windows (formal
definition deferred to section 3). Accordingly, the technique we will be developing is
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termed the multiscale window transform (MWT).

In order to complete the MWT development, classical analysis tools such as the
Fourier transform do not work, since they are global in character. Mathematical
machinery which might come to aid include the modern Hilbert–Huang transform or
HHT (Huang, Shen, and Long (1999)) and wavelet analysis (see, e.g., Strang and
Nguyen (1997)). The HHT is a powerful technique whose utility has recently been
recognized in the fields of nonlinear wave analysis and fault identification, among
many others. But here it does not fit our purpose. The difficulty comes from the
translation invariant kernel, 1

t−t′ , which does not form an orthonormal system (see
section 6 for more discussion). For orthonormal wavelet transforms, the transform
coefficients are defined discretely at different locations in time for different scales, as
shown in Figure 3. The associated energies, which are proportional to the square
of the transform coefficients, are thus also defined at different locations for different
scales. This implies that there is no way to sum across the scales to build scale
windows. One cannot apply mathematical manipulations such as interpolation, as
the energies are defined discretely. Wavelet analysis as such therefore does not help
either. The problem needs to be tackled via a different approach.
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Fig. 3. Schematic of the time-frequency representation of an orthonormal wavelet transform.
The transform coefficients, and hence energies, are defined discretely at different locations for dif-
ferent scale levels.

The appropriate mathematical framework is introduced in section 2, within which
the MWT is defined in section 3. Properties are explored in section 4, and connections
to wavelet analysis and the HHT, as well as the MED, are established in section 6.
We present a realization in sections 7 and 8 and test it with two examples (section 9);
we also briefly present an application to exemplify its utility (section 10). This study
is concluded in section 11.

2. Mathematical framework. We consider square integrable functions over
some finite domain D. Without loss of generality, let D be [0, 1]; if not, a transforma-
tion can always make it so. The study is thus conducted in some subspace of L2[0, 1]
(or L2[0, �] for some � restricted on [0, 1]), which must be a sampling space in order
to retain localization. This section introduces the subspace.

2.1. Multiresolution analysis of L2(R). We rely on the multiresolution anal-
ysis (MRA) of L2(R) by Meyer (1992) to fulfill our objective. By an MRA of L2(R)
we mean a sequence of closed subspaces {Vj}j∈Z such that the following hold (see,
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e.g., Hernández and Weiss (1996) and Meyer (1992)):2

(1) . . . V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . (nestedness).
(2) Cl

⋃
j∈Z

Vj = L2(R) (totality).
(3)

⋂
j∈Z

Vj = {0} (emptiness).
(4) There exists a translation invariant (affine) orthonormal set, i.e., an orthonor-

mal set formed by shifting the independent variable by integers, {φ(t−n− 1
2 ),

n ∈ Z}, that is total in V0.
(5) x(t) ∈ Vj iff x(2t) ∈ Vj+1 (refinability).

In item (4), we put a translation − 1
2 in the argument of φ to have the sampling points

sit in between adjacent integer locations. We will see the convenience this offers
later when boundary extensions are introduced. The closed subspace Vj is called a
multiresolution approximation of L2(R) at scale level j.

There is a localization requirement for the φ in item (4) to make {φ(t − n − 1
2 ),

n ∈ Z} a translation invariant basis. A function φ(t) is said to have a polynomial
localization about the origin (or simply localization) of order γ if

(2.1) |φ(t)| ≤ C

(1 + |t|2)γ/2 ≡ κc
γ(t) ∀ t ∈ R

for γ > 0, where C is some positive constant. There are also other types of localization
(cf. Holschneider (1995)), but here we consider polynomial localization only. The
parameter γ describes how fast the function decays with increasing |t|. The larger
the γ, the more localized the function φ(t). We consider γ > 1 only. In this case, it

is easy to check that, for any ε > 0, there exists an Lε =
(

2C
γ−1

) 1
γ−1 · ε− 1

γ−1 , such that∫
|t|>Lε

|φ(t)| dt ≤ ε. We say f(t) is effectively supported on [−Lε, Lε] up to ε.

The existence of such an MRA has been established (see, e.g., Hernández and
Weiss (1996)), and the nested Vj are all sampling spaces. These subspaces, however,
are defined over the entire real line R, while our problems are defined on [0, 1]. To
avail ourselves of the MRA convenience, we need to extend the functions of interest
beyond [0, 1] to R.

2.2. Boundary extension. There are different ways to carry out the extension.
Commonly used schemes include zero-padding (outside [0, 1]), periodic extension or
extension by periodization, and symmetric extension or extension by reflection. The
first is the easiest but usually not adequate, and so we consider the other two only.
For x1(t), t ∈ [0, 1], let x2(t) be an extension of x1(t). If x2 is obtained through
periodization, then

(2.2) x2(t + �) = x1(t) ∀ t ∈ [0, 1], � ∈ Z;

if x2 is obtained by extending x1 such that x1(t) is symmetric about the boundary
points, then

(2.3) x2(t + �) =

{
x1(t), � even, � ∈ Z, t ∈ [0, 1],
x1(1 − t), � odd, � ∈ Z, t ∈ [0, 1].

These two extensions can be expressed in a unified way. For this purpose, define a
�-periodic extension, � ∈ R (or an extension by periodization with period �), of a

2In Meyer’s original definition, the index of Vj runs in the opposite direction; namely, Vj is asso-
ciated with basis function φ(2−jt) rather than φ(2jt). This notation is also seen in other literature
such as Holschneider (1995). Here we follow the convention of Strang and Nguyen (1997), Louis,
Maaß, and Rieder (1997), and Wojtaszczyk (1997).
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[0, �]-defined function x1(t) to be another function x2 on R such that

(2.4) x2(t + ��) = x1(t) ∀ t ∈ [0, �], � ∈ Z.

In this way, the previously introduced periodization becomes a 1-periodic extension;
for the symmetric extension, it can be achieved through two steps: an extension from
[0, 1] to [0, 2] by reflection, followed by a periodization with period two. These two
schemes are essentially the same; we need only study the case of periodization with
some generic period �.

2.3. Multiresolution approximation of L2[0, �]. The above boundary ex-
tension yields an MRA over [0, �] or a circle TT (a torus in the higher-dimensional
case) with period �. Hernández and Weiss (1996) have given a salient treatment for
the case � = 1. Here we restate their results on [0, �].

Suppose we have an x1(t) ∈ L2[0, 1] and an extension x2 by �-periodization. The
transform of x2 with respect to the orthonormal scaling basis {φj

n(t)}n, where

φj
n(t) = 2j/2φ

(
2jt− n− 1

2

)
,

of the MRA over R is thus∫
R

x2(t)φ
j
n(t) dt =

∑
�∈Z

∫ �

0

x1(t)φ
j
n(t + ��) dt

=

∫ �

0

x1(t)

(∑
�∈Z

φj
n(t + ��)

)
dt.(2.5)

Denote

(2.6) φ�,j
n (t) =

∑
�∈Z

φj
n(t + ��).

The transform of x2(t) with respect to {φj
n}n∈Z over R is then equal to the transform

of x1(t) with respect to {φ�,j
n }n∈Nj

over [0, �]. One naturally conjectures that a finite-
dimensional subspace of L2[0, �] spanned by {φ�,j

n (t)}n∈Nj , Nj = {0, 1, . . . , 2j� − 1},
may be introduced. In the following, we show this is indeed true, and the resulting
subspace possesses some interesting properties.

First, we claim that the infinite sum in (2.6) converges, provided that φ satisfies
some localization requirement. In fact, we have the following.

Proposition 2.1. If φ has a localization γ > 1, (2.6) converges uniformly on
[0, �] for n = 0, 1, 2, . . . , 2j − 1.

Proof. This follows easily from the definition of polynomial localization (see
Hernández and Weiss (1996)).

The resulting sequence {φ�,j
n (t)}n∈Nj is finite and square integrable. It thus lies

in L2[0, �]. Moreover, we have the following.
Proposition 2.2. {φ�,j

n (t)}n∈Nj furnishes an orthonormal system in L2[0, �].
Proof. See Appendix A.
Proposition 2.2 allows us to build a subspace of L2[0, �]

(2.7) V�,j = span
{
φ�,j
n

}
n∈Nj

⊂ L2[0, �]
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with dimension 2j�. This procedure may be repeated again and again for any positive
integer j, resulting in a sequence of finite-dimensional (and hence closed) subspaces
of L2[0, �], {V�,j , j = 0, 1, 2, . . .}. The sequence possesses a property of inclusion.

Proposition 2.3. V�,j ⊂ V�,j+1 for all j = 0, 1, 2, . . . .
Proof. See Appendix B.
Moreover, it gives a hierarchy of approximations toward L2[0, �].
Proposition 2.4.

⋃∞
j=0 V�,j is dense in L2[0, �].

Proof. See Appendix C.
By Propositions 2.3 and 2.4, limj→∞ Vj is dense in L2[0, �]. This is to say, V�,j

is an approximation, called a multiresolution approximation, of L2[0, �] at level j.
Parallel to the MRA of L2(R), {V�,j} is called an MRA of L2[0, �].

2.4. Mathematical framework. The MRA {V�,j} furnishes the mathematical
framework for our study. We now show that all our problems can be studied within
some multiresolution approximation of L2[0, �].

In practice, signals for real problems are discrete as well as of finite length. For
convenience, suppose the signals of concern are output at N = 2j2 equidistant lo-
cations for some positive integer j2. (It will be clear in the next section why we
choose j2 as the notation.) Take, for example, some x(t), t being scaled by the signal
duration. This is equivalent to saying that we have a realization xn = x(tn), with
tn = n/N , and n = 0, 1, 2, . . . , N − 1. Since we have no a priori information about
the features on scales less than 1/N , what we need to justify is that the interpolation
of these N xn’s with some basis lies in some V�,j (and hence in any multiresolution
approximations of L2[0, �] with level higher than j). Choose the interpolation basis
to be {φ�,j

n }n∈Nj ⊂ V�,j , dim = 2j�. Then we need to show that

(2.8) xn =
∑

m∈Nj

αmφ�,j
m (tn), tn =

n

N
, n = 0, 1, . . . , N − 1,

has a unique solution for the coefficients αm. If we choose j = j2, the set furnishes
N = 2j2 equations with N unknown α’s. Written in a matrix form, this is

(2.9) Hα = x,

with the entries of H formed by summing up the scaling basis function:

(2.10) Hnm = φ�,j2
m (tn) =

∑
�∈Z

φj2
m−��N (tn).

If H is invertible, then α = H−1x, and this x thus interpolated lies in V�,j2 . Therefore,
the question whether x ∈ V�,j2 is justifiable is transformed into a problem regarding
the invertibility of H. The following proposition gives this question an answer for the
case � = 1.

Proposition 2.5. When � = 1, the matrix H formed above is of full rank if the
scaling function φ(t) is maximized at t = 0 and

(2.11) |φ(n)| ≤ φ(0)

(1 + n2)γ/2
∀ n ∈ Z

for some γ > 1, which satisfies the inequality

(2.12)
2

2γ/2
+

2

2γ−1 − 1
+

(
1 +

4

1 − 21−γ

)
1

Nγ−1
< 1,
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where N = 2j2 .
Proof. See Appendix E.
Note that we must have 2

2γ/2 + 2
2γ−1−1 < 1, or γ > 3.1, to make the inequality

(2.12) valid. Should this be true, (2.12) will hold, provided that N exceeds some
threshold value, a requirement which is usually very easy to meet. For example, when
γ = 4, a signal with a length N ≥ 3 will always have (2.12) satisfied.

When � = 2, one may also prove that H is of full rank given that (2.11) and
(2.12) are satisfied. But note that our purpose is to justify x ∈ V�,j2 . If that is true
when � = 1, then it is also true for the extension of x with � = 2. To see this, we
symmetrically extrapolate x to 2N points and interpolate to obtain a function x′(t),
t ∈ [0, 2]. Rescale the argument of x′ to construct a new function

(2.13) y(t) = x′(2t), t ∈ [0, 1],

and a corresponding series

(2.14) yn = y
( n

2N

)
= x′

n, n = 0, 1, . . . , 2N − 1.

At this point Proposition 2.5 applies. Note that the N in (2.12) now should be
replaced with 2N = 2j2+1, which further weakens the already weak condition (2.12),
given a scaling function. Thereby y(t), t ∈ [0, 1], lies in V�,j2+1. That is to say, when
(2.12) is satisfied, there exists a unique series αn such that

x′(t) = y(t/2) =

2N−1∑
m=0

αmφ�,j2+1
m (t/2), t ∈ [0, 2]

=

2N−1∑
m=0

√
2αmφ�,j2

m (t).(2.15)

This means that x′, a symmetric extension of x, lies in V�,j2 with period 2, just as
expected.

We have justified that all signals of interest lie in V�,j2 for some j2 large enough.
We have also obtained a sequence of closed spaces {V�,j}, j ≤ j2, which approximate
L2[0, �] at different scale levels. All the V�,j , 0 ≤ j ≤ j2, are sampling spaces. They
provide a framework for the establishment of the MWT.

3. Multiscale window transform.

3.1. Scale window. We study our problem in V�,j2 , with j2 prescribed according
to the signal of concern. From the closed sequence {V�,j}, j < j2, built above, the
index j represents a level of scale: the larger the j, the finer the scale. So we may
construct out of V�,j the scale ranges we need for the decomposition. Suppose V�,j2 is
to be split in the domain of scale exclusively into three ranges (more ranges can likely
be split), and suppose the ranges are divided at two scale levels, j0 and j1, j0 < j1 < j2.
By the inclusion property (Proposition 2.3), we have V�,j0 ⊂ V�,j1 ⊂ V�,j2 . This
implies that the following orthogonal decompositions may be performed:

V�,j2 = V�,j1 ⊕ V∼2,(3.1)

V�,j2 = V�,j0 ⊕ V∼1,(3.2)

where V∼2 and V∼1 are two subspaces of V�,j2 . They together with V�,j0 ≡ V∼0

form a mutually orthogonal decomposition of V�,j2 , each containing a certain range
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of scales. We will refer to them as submesoscale window, mesoscale window, and
large-scale window, respectively. Note that here in the subscripts “∼” is used to
stand for “window,” and 0, 1, 2 for large-scale, mesoscale, and submesoscale windows.
For convenience, they may be alternatively referred to as window 0, window 1, and
window 2, respectively. The following is a summary of these notations and definitions:

Scale window Notation Definition
Large-scale window V∼0 V�,j0 (j0 ≥ 0)
Mesoscale window V∼1 V�,j1 � V�,j0 (j1 > j0)
Submesoscale window V∼2 V�,j2 � V�,j1 (j2 > j1)

3.2. Multiscale window transform. The representation of signals on the scale
windows motivates the introduction of a transform which we will hereafter refer to as
the multiscale window transform (MWT). For a function p ∈ V�,j2 , first perform a
scaling transform

(3.3) p̂jn =

∫ �

0

p(t)φ�,j
n (t) dt

with respect to the orthonormal basis {φ�,j
n }n. The reconstructions or syntheses of p

on the three windows are

p∼0(t) =
∑

n∈Nj2

p̂j0n φ�,j0
n (t),(3.4)

p∼1(t) =
∑

n∈Nj2

p̂j1n φ�,j1
n (t) − p∼0(t),(3.5)

p∼2(t) = p(t) −
∑

n∈Nj2

p̂j1n φ�,j1
n (t)(3.6)

for t ∈ [0, �]. Note that p∼� ∈ V�,j2 for all windows 	 = 0, 1, 2; it may be further
transformed on the sampling space V�,j2 to have it represented while ensuring its
localization with maximal resolution. This defines a transform of p,

(3.7) p̂∼�
n =

∫ �

0

p∼�(t)φ�,j2
n (t) dt,

for windows 	 = 0, 1, 2. With (3.7), the three equations, (3.4)–(3.6), may be written
in a unified way:

(3.8) p∼�(t) =
∑

n∈Nj2

p̂∼�
n φ�,j2

n (t),

where 	 = 0, 1, 2. Equations (3.7) and (3.8) form the transform-reconstruction pair of
multiscale window analysis in L2[0, 1], with n running over Nj2 = {0, 1, 2, . . . , 2j2�−1}.

3.3. Restriction of representation to [0, 1]. The MWT is developed in V�,j2 ,
a subspace of L2[0, �], while our problem is on [0, 1]. That is to say, when � = 2, what
we actually are interested in is the MWT representation on [0, 1]. The restriction of
representation to [0, 1] is natural, but it raises an issue of energy conservation.

We know for p, q ∈ V�,j that there is a Parseval relation

(3.9)

∫ �

0

pqdt =

2j�−1∑
n=0

αnβn,
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where αn =
〈
p, φ�,j

n

〉
, βn =

〈
q, φ�,j

n

〉
, because of the orthonormality of {φ�,j

n }n on
[0, �]. The Parseval relation is the basis of the power spectrum; only with it can the
notion of energy be introduced with respect to an analysis. So when a representation
is restricted, we must also have the same relation hold. This forms the following
theorem.

Theorem 3.1. For all p, q ∈ V�,j,

(3.10)

∫ 1

0

pqdt =

N−1∑
n=0

αnβn,

where N = 2j, αn =
∫ �

0
pφ�,j

n dt, and βn =
∫ �

0
qφ�,j

n dt, if φ(t) is symmetric about
zero.

Proof. See Appendix D.
Theorem 3.1 is important in that it forms the basis of energy analysis with respect

to the MWT. It also sets a requirement for the candidate scaling function.

4. Properties. The MWT and reconstruction as defined by (3.7) and (3.8) pos-
sess some interesting properties. Several useful ones are listed in this section.

Theorem 4.1. Given p, q ∈ V�,j2 and two constants c1, c2 ∈ R, we havê(c1p + c2q)
∼w

n = c1 p̂
∼w
n + c2 q̂

∼w
n ,(4.1)

(p∼w)
∼v

= (p∼v)
∼w

= δvw p∼w,(4.2) ̂(p∼v)
∼w

n = δvw p̂∼w
n(4.3)

for n ∈ Nj2 and v, w = 0, 1, 2.
These identities follow directly from definitions (3.7) and (3.8) and the mutual

orthogonality between the three windows V∼0, V∼1, and V∼2.
Theorem 4.2. Suppose p(t), t ∈ [0, 1], is a function in V�,j2 , and a periodic

extension is used (� = 1). Suppose further that the scaling function φ has a polynomial
localization of order γ > 1. We have, for j0 = 0,

(4.4) p∼0(t) = p̂j00 = p(t) ∀ t ∈ [0, 1],

where the overline signifies an averaging over the duration, i.e., p(t) =
∫ 1

0
p(t) dt.

Proof. We appeal to the fact that if the scaling function φ is of polynomial
localization of order γ > 1, then

(4.5) φ�,0
n (t) =

∑
�∈Z

φ

(
t + �− n− 1

2

)
= 1

for all t ∈ [0, 1], a direct consequence of the fact that
∑

l∈Z
φ(t + l) = 1 when γ > 1

(see, e.g., Hernández and Weiss (1996, p. 222); but the condition they impose is
weaker). By property (4.3),

̂(p∼0)
0

n = ̂(p∼0)
∼0

n = p̂∼0
n = p̂j0n = p̂0

n.

So

p∼0(t) =

20−1∑
n=0

̂(p∼0)
0

n · φ�,0
n (t) = p̂0

0

=

∫ 1

0

p(t)φ�,0
0 (t) dt =

∫ 1

0

p(t) dt = p(t).
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Theorem 4.2 implies that, for a periodically extended signal, when the large-scale
window has an upper level bound j0 = 0, its synthesis on this window is simply
the mean or average over the duration. If we consider only two windows, the re-
construction on window 1 is the fluctuation from the mean. The classical MED is
thus recovered if we set j0 = 0 and � = 1 (periodic extension) and consider only two
windows. This shows how the classical MED is generalized in our MWT.

An interesting observation is that, in Theorem 4.2, p∼0 = 2j2/2p̂∼0
n = p̄ for

all n ∈ Nj2 . That is to say, in this case, the large-scale transform and large-scale
reconstruction are essentially the same, both equal to the mean over the definition
domain (except for a constant factor). In other words, when taking a mean in the
classical framework, one could be performing a transform, or doing a reconstruction,
which are completely different in functional analysis.

Another useful theorem connects quadratic quantities in the physical domain to
counterparts in the transform domain.

Theorem 4.3. Given p(t), q(t) ∈ V�,j2 , the following equality holds:

(4.6)

N−1∑
n=0

p̂∼�
n q̂∼�

n =

∫ 1

0

p∼�(t)q∼�(t) dt (N = 2j2)

for all scale windows 	 = 0, 1, 2.
Proof. For any p, q ∈ V�,j2 , we can find the multiscale synthesis p∼w, q∼w ∈ Vj2

for windows w = 0, 1, 2. Let N = 2j2 , substitute, respectively, p∼w, q∼w for the p, q
in the equality of Theorem 3.1, and use definition (3.7), which may be alternatively
stated as

̂(p∼w)
j2

n = p̂∼w
n ,

and the result then follows immediately.
The sum of transform coefficients squared over n ∈ Nj2 has been called “marginal

energy” by Huang, Shen, and Long (1999), in analogy to the nomenclature of probabil-
ity theory. We will henceforth refer to

∑
n p̂

∼w
n q̂∼w

n as the marginalization of p̂∼w
n q̂∼w

n

over Nj2 and, accordingly, Theorem 4.3 as the property of marginalization. Using the
overline notation for duration averaging, this property may be restated succinctly as

(4.7)

N−1∑
n=0

(p̂∼w
n q̂∼w

n ) = p∼wq∼w

for the three windows w = 0, 1, 2.

5. Energy representation. The property of marginalization allows for a simple
representation of the energy on a specified window and location. For p ∈ V�,j2 ,

N = 2j2 , let E�∗
n ≡ (p̂∼�

n )
2

(	 = 0, 1, 2). By (4.7),

(5.1)

N−1∑
n=0

E�∗
n =

∫ 1

0

[p∼w(t)]
2
dt,

which is the energy on window 	 (up to some constant factor) integrated over [0, 1].
E�∗

n thus can be viewed as the energy of window 	 summed over a small interval of
length Δt = 2−j2 around location t = 2−j2(n+ 1

2 ). An energy variable for window 	
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at 2−j2(n+ 1
2 ) consistent with the fields at that location is therefore a locally averaged

quantity

(5.2) E�
n =

1

Δt
E�∗

n = 2j2 · (p̂∼�
n )

2

for 	 = 0, 1, 2.

6. Connection to other transforms. It is interesting to compare the MWT
to some well-known analysis techniques. First, the MWT is a generalization of the
classical MED to include localization and more ranges of scales, as established in the
preceding section. Particularly, the averaging in the classical MED could mean a
transform or a reconstruction in our framework.

The MWT is naturally connected to wavelet analysis in that both of them are
based on MRA. The largest difference between them is that the MWT is not a
transform in the usual sense; there is no specific basis in the domain of scales. Rather,
it is an orthogonal complementary subspace decomposition, and, as a result, the
MWT coefficients contain information with a range of scales, instead of a single scale.
(Because of this, it is required that window bounds be specified a priori.) Furthermore,
the MWT transform is projected onto V�,j2 , and so the transforms obtained for all
the windows have the same resolution—the maximal resolution allowed by the signal.
This is in contrast to wavelet analysis, whose transform coefficients have a different
resolution on different scales (cf. Figure 3).

The HHT is a localized transform which has recently found important applica-
tions in nonlinear wave studies, fault identification, etc. Loosely speaking, it separates
a signal into intrinsic modes via empirical mode decomposition and then applies the
Hilbert transform; details are contained in Huang, Shen, and Long (1999). Notice that
the decomposition and transform parallels the two steps with the syntheses (3.4)–(3.6)
and the transform (3.7). The difference is that, in the MWT, the second-time trans-
form is with respect to a basis in the same family as the one employed in the a priori
decomposition. The largest difference, of course, is that the MWT is built for the
derivation of physical laws, and the resulting quantities such as energy are intended
for quantitative and objective representation, rather than qualitative description, of
physics. As will be elaborated in an upcoming paper, the orthonormality of {φ�,j2

n }n
allows for simple expression of a law governing the mean-eddy-turbulence interaction
in turbulent fluids. On the contrary, the kernel of the Hilbert transform, 1

t−t′ , does
not have the orthonormal property, and hence how it may be incorporated into this
study is still not clear.

7. The scaling function. A scaling basis {φ(t−k)}k∈Z is required to fulfill the
MWT construction. According to the above sections, the basis function φ must meet
the following requirements:

1. {φ(t− k)}k∈Z is orthonormal;

2. φ(t) is symmetric about and maximized at the origin, and |φ(n)| ≤ φ(0)
(1+n2)γ/2 ,

for n ∈ Z;
3. φ(t) is polynomially localized up to order γ > 3.1, i.e., |φ(t)| ≤ κC

γ (t) =
C

(1+t2)γ/2 , γ > 3.1 (see (2.1)).

There is a large family of φ meeting these requirements. This section briefly introduces
one built out of the cubic spline to realize our MWT.
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7.1. B-splines. It is well known that splines, or B-splines as they are usually
referred to, provide bases for certain piecewise polynomials (see, e.g., Strang and
Nguyen (1997)). They can be constructed to any degree. For the widely used cubic
spline, it consists of polynomials of the third degree on unit intervals within [−2, 2]
with derivatives continuous up to second order. Splines can be defined with time-
domain box functions. n + 1 box functions convolve to form an nth degree B-spline.
Particularly, a cubic B-spline is

(7.1) φ3(t) = B(t) ∗B(t) ∗B(t) ∗B(t)

with the box function B(t) defined as

B(t) = φ0(t) =

{
1, |t| < 1

2 ,
0 otherwise.

Figure 4 is a plot of φ3(t) versus t.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

φ
3
(t)

t

Fig. 4. B-spline of the third degree.

The cubic B-spline has a compact support; it is also symmetric if the data points
are evenly spaced (we do not consider irregularly spaced series in this study), as
can easily be seen from Figure 4. It is, however, not orthonormal on translat-
ing (Daubechies (1992) and Strang and Nguyen (1997)). As orthonormality is of
paramount importance for this study, we orthonormalize φ3(t) in the following.

7.2. Orthonormalization. There are several ways toward the orthonormaliza-
tion. An easy one, as elucidated in Strang and Nguyen (1997), manipulates the basis
in the Fourier domain.

Suppose there is a translation invariant nonorthonormal basis {φ∗(t − k)}k∈Z,
which spans V0 ⊂ L2(R). We want to orthonormalize it to {φ(t− k)}k∈Z. In the time
domain, the orthonormality of {φ(t− k)}k∈Z reads that

a(φ, k) ≡
∫ ∞

−∞
φ(t)φ(t− k) dt = δ(k),

which, if transformed to the frequency domain, becomes

A(φ̂, ω) =
∞∑

n=−∞
|φ̂(ω + 2πn)|2 = 1.
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This condition is also sufficient; a detailed proof can be found in Strang and Nguyen
(1997). We thus have

(7.2) {φ(t− k)}k∈Z orthonormal iff A(φ̂, ω) = 1.

If, for some dilation function φ∗, A(φ̂∗, ω) > 0, condition (7.2) implies that we
may orthonormalize B∗ = {φ∗(t − k)}k∈Z in the frequency domain by dividing it

by

√
A(φ̂∗, ω). The positivity of A(φ̂∗, ω) is guaranteed (a property of Riesz basis;

see Strang and Nguyen (1997, Theorem 6.13)). It is shown in Liang (2002) that the
orthonormalized sequence

(7.3) Borth ≡ {φ(t− k)}k∈Z, φ(t) = F−1

⎛⎝ φ̂∗(ω)√
A(φ̂∗, ω)

⎞⎠ ,

F−1 being an inverse Fourier transform, indeed generates V0. That is to say, B∗ and
Borth span the same subspace of L2(R).

With this result we proceed to orthonormalize the cubic spline. Take the Fourier
transform of (7.1),

(7.4) φ̂3(ω) = sinc4
(ω

2

)
=

(
sinω/2

ω/2

)4

,

where ω is frequency in radians, and then divide by

√
A(φ̂3, ω) to obtain

(7.5) φ̂(ω) =
φ̂3(ω)√
A(φ̂3, ω)

,

where

(7.6) A(φ̂3, ω) =

∞∑
n=−∞

|φ̂3(ω + 2πn)|2.

An inverse Fourier transform of the resulting φ̂(ω) yields the desired φ(t). Plotted in
Figure 5 are φ3(ω), φ(ω), and φ(t).

The φ(t) obtained is symmetric about and maximized at t = 0. It decays ex-
ponentially fast as |t| goes to infinity (Holschneider (1995)) and hence should meet
any polynomial localization needs. As shown in Figure 6, |φ(t)| lies below κc

2(t) with
C = 3 and γ = 4 > 3.1. It is also easy to check that the condition of Proposition 2.5
is satisfied. In other words, the Borth of (7.3) is what we are seeking.

The resulting bases φ�,j
n (t) are plotted in Figure 7 for a selection of scale level j.

Boundary effects are easily seen, but they are limited within a distance of the order
of the size of the main lobe. This implies that if the signal under consideration is
long enough, the boundary effects should not be a problem in practice. We will have
a chance to see this again with two examples in section 9.

8. Computing the multiscale window transform. Given a p ∈ V�,j2 , the
key to its multiscale window analysis is finding

(8.1) p̂jn =

∫ �

0

p(t)φ�,j
n (t) dt
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Fig. 5. The cubic B-spline (in frequency domain ω in radians) (a) and its orthonormalization
(in both frequency domain (b) and time domain (c)).
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Fig. 6. The absolute cubic B-spline scaling function |φ(t)| versus κC
γ (t) = C

(1+t2)γ/2 (thick

line) with γ = 4 > 3.1, C = 3.

for the three window bounds j = j0, j1, j2. Once this is done, all the window trans-
forms and reconstructions can be directly computed from definitions (3.7) and (3.8).

Computation of (8.1) is realized via two steps. First, suppose that we already
know p̂j2n . Notice that (8.1) is equivalent to the scaling transform of the periodic or
symmetric extension of p over R with respect to {φj

n}n∈Z. So we can avail ourself of
the arsenal of fast scaling transform to conveniently find the p̂jn at all levels below j2.
In a formula unifying the two extension schemes,

(8.2) p̂jn =
∑

m∈Nj

p̂j+1
m

∑
�∈Z

h0(m− 2n− 2j+1��),
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Fig. 7. The {φ�,j
n (t)}n built out of the cubic spline with � = 1.

where h0 is a low-pass filter constructed from φ:

(8.3) h0(k) =
1√
2

∫
R

φ

(
t

2

)
φ(t− k) dt.

For more about scaling transforms and the filter bank h0, we refer the reader to Strang
and Nguyen (1997).

We still need to find p̂j2n . To do this, two cases are distinguished: � = 1 and � = 2.
First, look at the case � = 1. Recall that observations of a function p(t) are available
only at 2j2 = N points: tn = n

N , n = 0, . . . , N − 1. It has been justified in section 2
that p(t) ∈ V�,j2 . The values p take at these points then must satisfy

(8.4) p(tm) =

N−1∑
n=0

p̂j2n φ�,j2
n (tm), m = 0, . . . , N − 1.

In a matrix form, this is Hp̂j2 = p, where p =
[
p(t0), p(t1), . . . , p(tN−1)

]T
, p̂j2 =[

p̂j20 , p̂j21 , . . . , p̂j2N−1

]T
, and
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(8.5) H =

⎡⎢⎢⎢⎣
H0,0 H0,1 . . . H0,N−1

H1,0 H1,1 . . . H1,N−1

...
...

...
...

HN−1,0 HN−1,1 . . . HN−1,N−1

⎤⎥⎥⎥⎦ ,

with the entries Hmn = φ�,j2
n (tm) for m,n = 0, 1, . . . , N − 1. Given the φ as built in

the preceding section, this H is invertible. So

(8.6) p̂j2 = H−1p.

Notice that H is determined completely by the structure of the chosen space; it
has no dependence on the signal p. In other words, the matrix inverse in (8.6) may
be obtained once and for all. Notice further that, when � = 1, Hm,n+N = Hm,n, and
Hm,n = Hm+α,n+α, for all integers α, m, and n that make the indices meaningful,
which is due to the periodic property of φ�,j2

n (t). This fact implies that H is a

circulant matrix, and hence H−1 is also circulant (see Davis (1979)). This H−1

therefore behaves like a cyclic filter (except for a constant multiplier), pretreating
signals before they enter the fast analysis bank. (Here the “prefilter” is from the rows
of the circulant matrix H−1.) An example of the prefilter for j2 = 10 and � = 1 is
shown in Figure 8. We see that it is rather weak (side lobes negligible compared to
the value at zero) and exerts effects only on grid-size features.

−10 −5 0 5 10
−0.01

0

0.01

0.02

0.03

The "pre−filter" from the rows of H−1

Fig. 8. The “prefilter” formed from the rows of the H−1 with � = 1 and j2 = 10 for the
computation of p̂nj2.

For the case � = 2, we first extend the discrete signal p(tn) from [0, 1] to [0, 2]
by reflection. The problem is then changed into calculating the transform of p(t)
reconstructed from this extended signal. Let q(t) = p(2t). q(t) is hence in V�,j2+1 and
is formed by periodic extension from domain [0, 1]. By the previous result, we can
obtain q̂j2+1

n by solving equation

2N−1∑
n=0

q̂j2+1
n

∑
l∈Z

φj2+1
n−2Nl

( m

2N

)
= q

( m

2N

)
,(8.7)

m = 0, 1, . . . , 2N − 1.
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If N satisfies condition (2.12), so does 2N . This equation must have a unique solution
for q̂j2+1

n . By what we have shown in (2.15), it is easy to get

(8.8) p̂j2n =
√

2 q̂j2+1
n , n = 0, . . . , 2N − 1.

Once p̂jn, j = j0, j1, j2, are obtained, (3.7) and (3.8) immediately yield the desired
MWTs and reconstructions.

9. Validation. We validate the obtained MWT with two highly localized and
distinctly scale-windowed signals:

f1(t) = e−α(t− 1
2 )2 + ae−β(t− 1

2 )2 sinω

(
t− 1

2

)
,(9.1)

f2(t) = t− 1

2
+ ae−β(t− 1

2 )2 sinω

(
t− 1

2

)
.(9.2)

Plotted in Figure 9 are these signals sampled at 2j2 (j2 = 10) locations with α = 25,
β = 1 × 104, ω = 150π, a = 0.5. As the two-scale features are clear, we want to see
whether the MWT can faithfully reconstruct them.
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Fig. 9. The signals sampled from f1(t) and f2(t), t ∈ [0, 1], at 210 equidistant locations.

We perform a two-scale window decomposition (windows 0 and 1), the large-scale
window bound set to be j0 = 5. The analysis results with � = 1 are plotted in
Figure 10, column (a) for f1 and column (b) for f2. In either case, the large-scale
background and the highly localized oscillation in the interior region have been well re-
constructed. The transform coefficients, and hence the energy, also recover the highly
localized features, just as one expects. (Note that the energy has a distribution as
reconstructions have, in contrast to the one-value energy in the MED framework.)
However, a severe problem arises at the endpoints of case f2: Large spurious oscilla-
tions occur due to the mismatch between the boundary values f2 takes. Clearly, the
periodic extension is not appropriate for signals such as f2.

A different scenario in the analysis result is seen when the extension by reflection
is used, i.e., when � = 2 is chosen. As shown in Figure 11, all the features are just as
expected, and the boundary oscillations for the f2 case are almost indiscernible. In
reality, symmetric extension (� = 2) can usually meet the needs of different problems
because of the continuity at the boundaries. It should always be used unless the
function is precisely periodic, i.e., unless � = 1 is a precise extension.

10. Discussion and illustration of an application. In this section we briefly
show how the MWT can be applied to the study of the complex multiscale interaction
as schematized in Figure 1. This kind of interaction is very important in fluid mechan-
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Fig. 10. The transforms (upper row) and reconstructions (lower row) of f1(t) (column (a))
and f2(t) (column (b)), which are shown in Figure 9. The MWT parameters used include j0 = 5
and � = 1. In each subplot, the thick line represents the large-scale window. Note that the transform
coefficients are discrete in character; they look continuous because there are 2j2 = 1024 sampling
points.
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Fig. 11. Same as Figure 10, but with � = 2.

ics, as it is related to hydrodynamic stability, turbulence production, laminarization,
atmospheric cyclogenesis, and ocean eddy shedding, to name a few. Our intention is
just to show the utility of the MWT. The reader should focus on the overall pattern
in the discussion; details are deferred to other papers cited hereafter.

Consider a scalar field T advected by a flow v. Coherent and smaller structures
may be generated if both T and v vary. Represent the basic profile and these struc-
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tures on the large-scale, mesoscale, and submesoscale windows, respectively. (Here we
consider scale windows with respect to time.) The structure genesis problem is then
boiled down to finding how energy (quadratic quantities related to T ) is transferred

between these windows. Denote by E�
n the energy 1

2 T̂
∼�
n for scale window 	 at time

step n. It has been proved that this transfer is3

(10.1) Γ�
n = E�

n ∇ · vT , where vT =
̂(vT )

∼�

n

T̂∼�
n

,

where vT has the dimensions of velocity, and has been referred to as T -coupled ve-
locity. It may be viewed as a kind of averaged velocity with weights derived from
the MWT transforms of T . So with the MWT, the multiscale interaction, or, more
concretely, the mean-eddy-turbulence interaction, can be expressed succinctly as the
divergence of the T -coupled velocity.

The above transfer Γ�
n is Eulerian and localized. It possesses a very interesting

property, i.e.,

(10.2)
∑
�

∑
n

Γ�
n = 0,

as proved in Liang and Robinson (2005), with the aid of Theorem 4.3 (property of
marginalization). That is to say, the transfer is a mere redistribution of energy among
the scale windows. It does not generate or destroy energy as a whole. For this reason,
it has been called perfect transfer, to distinguish it from those transfers one might
have encountered in the literature.

The concept of perfect transfer as defined above is the key to the understanding of
the multiscale interactions in fluid flows. One may obtain the perfect transfer of kinetic
energy among windows by replacing the T in (10.1) by the velocity components and
then summing the resulting Γ’s; one may also obtain the perfect transfer of potential
energy by replacing the T by density anomaly (up to some constant factor). The
resulting perfect transfers correspond to the two important geophysical fluid dynamics
(GFD) instabilities, the barotropic instability and baroclinic instability (Liang and
Robinson (2005)). This way the GFD instabilities can be studied locally, without the
difficulties embedded in the classical formalisms (see, e.g., Pedlosky (1979)).

The localized GFD instability theory in terms of MWT has been applied to the
investigation of a variety of complex oceanic processes, which otherwise would be
very difficult, if not impossible, to investigate. Hereafter we briefly summarize some
results from an application by Liang and Robinson (2004) on the variability of the
Iceland–Faeroe front (IFF).

The IFF is a highly variable oceanic front between Iceland and the Faeroe Islands
(Figure 12) which separates the waters from two major oceans, the North Atlantic
and the Arctic. Understanding the dynamical processes governing its variability is
very important, not only for oceanography and climate research but also for mili-
tary operations and fishery industry. Extensive research effort has been invested in
this region ever since the 1958 International Geophysical Year surveys (see Robinson
et al. (1996)). However, because of the high nonlinearity and complexity, the dy-
namical processes had not been clear until the MWT and the MWT-based theory of
perfect transfer recently became available (Liang and Robinson (2004)).

3A brief treatment can be seen in Liang and Robinson (2005); detailed derivation is deferred to
a forthcoming paper. The key thing here is a unique separation of transport processes from transfer
processes, which is made precise within the MWT framework.
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Fig. 12. Topography of the IFF region. Inserted into the middle is the survey domain. A
satellite image showing the sea surface temperature on August 22, 1993 is also inserted into the
bottom-right corner.

By observation, the IFF variability is basically a mesoscale process highly in-
termittent in space and time; it is not a process on some individual scale but on a
window with a range of scales. The central issue about the mesoscale dynamics is
how it derives energy from the background. So the aforementioned theory is expected
to apply here.

Liang and Robinson (2004) examined a dataset acquired in August of 1993 which
captured the processes toward the formation of a highly localized meandering intrusion
on August 22, as shown in Figure 12 in the inserted satellite picture of sea surface
temperature. This dataset has been well studied, with different results available for
comparison. They first determined the window bounds. In the wavelet spectrum
of the temperature series in the meandering region, a time scale window between
0.75–2.6 days is shown to fully capture the mesoscale meandering event. Plotted in
Figure 13 are the large-scale and mesoscale reconstructions or syntheses for a typical
time series. With the window bounds the computation of the perfect transfers is
straightforward. As an example, the potential energy transfer for the depth of 300 m
is computed (kinetic energy transfer is insignificant).4 The resulting transfer sequence
is drawn in Figure 14. Remarkably, appearing on the map is a clear solitary positive
regime around the center during the intrusion event, while in other subregions it

4The depth and time steps are chosen the same as those in Figure 9 of Liang and Robinson (2004).
The result here is similar but slightly different, as the program codes have since been optimized.
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Fig. 13. A time series of the temperature (top, solid line), and its large-scale window synthesis
(top, dashed line) and mesoscale or eddy window synthesis (bottom) for point (11◦W, 64◦N), at
depth 300 m. The decomposition is such that processes with periods shorter than and equal to
2.6 days (characteristic of the meandering intrusion) are included in the eddy window. In the
bottom panel, signals with periods shorter than 0.75 day have been filtered out. The forecast starts
on August 14 (day 0), 1993.
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Fig. 14. The evolution of the perfect potential energy transfer (constant factor multiplied to
ensure physical interpretation) for the IFF region from August 17–22, 1993 at depth 300 m. The
units are in m2/s3.

is virtually zero. This is in contrast to the complicated maps of other diagnostic
properties (Liang and Robinson (2004)) and the previous dynamical analyses (cf. the
references in Robinson et al. (1996) and Liang and Robinson (2004)). Clearly, a
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baroclinic instability is occurring here.

Moreover, the baroclinic instability actually has an interesting spatial-temporal
structure. Originally, the hotspot sits near the western boundary; it then moves into
the interior, where it halts and amplifies, and diminishes to zero by August 23, just
after the meandering matures. That is to say, the instability originally appears in
the west. Disturbances are introduced eastward into the domain along the front in a
form of spatial growing mode. This is a convective instability. After August 19, the
disturbances become strong enough to counteract the propagation. Correspondingly,
the process is switched into a time growing mode, i.e., an absolute instability, leading
to the meandering intrusion.

In a brief summary, underlying the complex IFF variability, at least in August
1993, turns out to be a baroclinic instability, first in the form of a convective instability
and then switching to an absolute instability. This clear-cut dynamical scenario results
from a direct application of the MWT.

11. Summary. A new apparatus, the multiscale window transform (MWT),
has been developed for the analysis of highly localized multiscale processes. Based on
Meyer’s multiresolution analysis, the MWT generalizes the classical mean-fluctuation
or mean-eddy decomposition (MED) to include three or more ranges of scales and to
ensure a faithful representation of localized events in terms of energy.

The MWT is developed within the framework of V�,j2 ⊂ L2[0, 1], a finite-
dimensional sampling space spanned by a translational invariant basis built out of
some scaling function φ. A sequence of subspaces of V�,j2 , {V�,j}0≤j≤j2 , is then
constructed, which allows for the introduction of the concept of scale window, i.e., a
subspace of V�,j2 containing a range of scales. We have defined three mutually orthog-
onal windows: the large-scale window, mesoscale window, and submesoscale window.
Given a signal p, reconstructions on these three windows followed by a scaling trans-
form with respect to the orthonormal basis of V�,j2 yield the large-scale, mesoscale, and
submesoscale transforms of p, respectively. These transforms and the reconstructed
components form the transform-reconstruction pairs of the MWT. Properties have
been explored. Of particular importance is the property of marginalization, which
allows for an easy representation of energy for specified windows and locations. We
have presented a realization with a scaling function φ orthonormalized from the cubic
spline. Also presented is a fast transform scheme. Two examples have been supplied
as a validation of this machinery.

The MWT generalizes the classical MED in that it retains localized information,
has faithful local energy representation, and may include three or more ranges in
the domain of scale. It is interesting to note that the simple operator of averaging
or mean in the classical sense may be both a transform and a reconstruction, two
distinctly different concepts in functional analysis. The MWT has also been compared
to wavelet analysis and the HHT. Its utility was exemplified in an oceanographic
application.

In this paper the transform is over one dimension. More dimensions may be added,
but the development is much more difficult. For example, in the two-dimensional
(2D) case, the sequence of subspaces of V�,j2 , {V�,j}j , are not as simple as their 1D
counterparts. A framework has been built in Liang (2002) to deal with these issues,
within which we have studied a variety of decompositions in forming the sequence
(particularly the tensor product decomposition and quincunx decomposition) (ibid.).
The so-formed 2D MWT has been applied in several real problems, e.g., Liang and
Robinson (2004). We will elaborate it in another paper.
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Appendix A. Proof of Proposition 2.2.
Proof. We need only to show that∫ �

0

φ�,j
n (t)φ�,j

n′ (t) dt = δ(n− n′), n, n′ = 0, 1, 2, . . . , 2j�− 1.

By the definition of periodized bases,∫ �

0

φ�,j
n (t)φ�,j

n′ (t) dt

=
∑
�∈Z

∑
�′∈Z

∫ �

0

φj
n(t + ��)φj

n′(t + ��′) dt

=
∑

Δ�∈Z

∑
�′∈Z

∫ �(�′+1)

��′
φj
n(t′ + �Δ�)φj

n′(t
′) dt′

(t′ = t + ��′, Δ� = �− �′)

=
∑

Δ�∈Z

∫
R

φj
n−2j�Δ�(t

′)φj
n′(t

′) dt′

=

∫
R

φj
n(t′)φj

n′(t
′) dt′ +

∑
Δ� 
=0

∫
R

φj
n−2j�Δ�(t

′)φj
n′(t

′) dt′.

In the derivation we have used term-by-term integration, which is made legitimate by
the localization assumption for φ (polynomially localized up to an order γ > 1) we
made in the beginning. Since n, n′ ∈ Nj , an integer Δ� which is different from zero
will not give any chance for n − 2j�Δ� to be equal to n′. By the orthonormality of
{φj

n}n∈Z, the second term of the above equation is hence zero, and the whole equation
is simply δ(n− n′). This finishes the proof of Proposition 2.2.

Appendix B. Proof of Proposition 2.3.
Proof. We have assumed that � is a power of 2. Let it be 2λ, with λ a positive

integer. This yields the following two useful identities:

φ1,j+λ
n

(
t

�

)
=

√
�φ�,j

n (t),(B.1)

Nj = N j+λ
1 .(B.2)

Any p ∈ V�,j has a representation

(B.3) p(t) =
∑
n∈Nj

αnφ
�,j
n (t)

with some expansion coefficients αn. Make a transformation

t′ = t/�, t = �t′.

By (B.1) and (B.2),

p(�t′) =
∑
n∈Nj

αnφ
�,j
n (�t′)

=
∑

n∈N j+λ
1

αn√
�
φ1,j+λ
n (t′).
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This is to say,

p�(t
′) ≡ p(�t′) ∈ V1,j+λ.

As proved in Hernández and Weiss (1996), we have

V1,j+λ ⊂ V1,j+1+λ.

So we see that

p(�t′) = p�(t
′) =

∑
n∈N j+λ+1

1

βnφ
1,j+λ+1
n (t′)

=
∑

n∈N j+1
�

√
�βnφ

�,j+1
n (�t′),

where βn are some expansion coefficients. Transformed back to t, this is

p(t) =
∑

n∈N j+1
�

βnφ
�,j+1
n (t),

which means p ∈ V�,j+1. Since p is chosen arbitrarily from V�,j , we have

V�,j ⊆ V�,j+1.

But dimV�,j+1 > dimV�,j , and so

V�,j ⊂ V�,j+1.

Appendix C. Proof of Proposition 2.4.
Proof. By the inclusion property proved above, we need only show that limj→∞ V�,j

is dense in L2[0, �]. The proof of case � = 1 has been provided by Hernández and
Weiss (1996). Moreover, they have shown that, for any function g ∈ L2[0, 1],

(C.1) lim
j→∞

‖g − P j
1 g‖C∞ = 0,

where P j
1 denotes the projection operator from L1[0, 1] onto V1,j (C∞[a, b] is the

normed space of continuous functions that have finite extrema over [a, b]). Now con-
sider function f ∈ L2[0, �]. We want to examine the performance of

‖f − P j
�f‖C∞

when j is very large. Here P j
� : L2[0, �] −→ V�,j projects functions in L2[0, �] onto

V�,j , (notice that V�,j ⊂ C∞(R) for j ≥ 0), and � is by assumption a power of 2.
Make a transformation of variable:

t′ = t/�, t = �t′,

and let

g(t′) = f(�t′);
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then g ∈ L2[0, 1]. By (C.1), for any ε > 0, there always exists a J = J(ε) > 0, such
that

(C.2) ‖g − P j+λ
1 g‖C∞ < ε

if j > J . Here λ = log2 � is a positive integer, and

P j+λ
1 g(t′) =

∑
n∈N j+λ

1

αnφ
1,j+λ
n (t′)

with the expansion coefficients being

αn =
〈
g, φ1,j+λ

n

〉
=

∫ 1

0

g(t′)φ1,j+λ
n (t′) dt′

=

∫ 1

0

f(�t′) · √�φ�,j
n (�t′) dt′ ((B.1) applied)

=
1
√
�

∫ �

0

f(t)φ�,j
n (t) dt

=
1
√
�

〈
f, φ�,j

n

〉
≡ 1

√
�
βn,

where {βn} are the expansion coefficients of f with respect to {φ�,j
n }n. So

P j+λ
1 g(t′) =

∑
n∈N j+λ

1

1
√
�
βn · √�φ�,j

n (�t′) ((B.1) applied)

=
∑
n∈Nj

βnφ
�,j
n (t) ((B.2) applied)

= P j
�f(t).

But we also know g(t′) = f(�t′) = f(t); what (C.2) actually states is thus

‖f − P j
�f‖C∞ < ε

as j > J . That is to say, given any ε > 0, when j > J(ε), V�,j is an ε-net of L2[0, �],
and hence limj→∞ V�,j is dense in L2[0, �].

Appendix D. Proof of Theorem 3.1.

Proof. When � = 1, this is precisely (3.9). When � = 2, the Parseval relation
reads

(D.1)

∫ 2

0

p(t) q(t) dt =

2N−1∑
n=0

αnβn.

Since both p and q are obtained by symmetric extension, we have

(D.2) p(2 − t) = p(t), q(2 − t) = q(t).
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So the left-hand side of (D.1) is∫ 2

0

p(t) q(t) dt =

∫ 1

0

p(t) q(t) dt +

∫ 2

1

p(t) q(t) dt

=

∫ 1

0

p(t) q(t) dt−
∫ 0

1

p(2 − t′) q(2 − t′) dt′ (t′ = 2 − t)

=

∫ 1

0

p(t) q(t) dt +

∫ 1

0

p(t′) q(t′) dt′

= 2

∫ 1

0

p(t) q(t) dt.(D.3)

To perform a similar decomposition for the right-hand side of (D.1), notice that

αn =

∫ 2

0

p(t)φ2,j
n (t) dt

=

∫ 2

0

p(t)
∑
�∈Z

φj
n−2N�(t) dt

=

∫ 2

0

p(t)
∑
�∈Z

√
Nφ(Nt− n + 2N�) dt

= −
∫ 0

2

p(2 − t′)
∑
�∈Z

√
Nφ(N(2 − t′) − n + 2N�) dt′ (t′ = 2 − t)

=

∫ 2

0

p(t′)
∑
�∈Z

√
Nφ(Nt′ − 2N + n− 2N�) dt′ (p & φ symmetric)

=

∫ 2

0

p(t′)φ2,j
2N−n(t′) dt′

= α2N−n,

and this is true for all n = 0, 1, . . . , 2N . Likewise,

βn = β2N−n ∀ n = 0, 1, 2, . . . , 2N − 1.

So

(D.4)

2N−1∑
n=0

αnβn = 2

N−1∑
n=1

αnβn.

Equations (D.3) and (D.4) substituted back into (D.1) yield∫ 1

0

p(t) q(t) dt =

N−1∑
n=0

αnβn.

Appendix E. Proof of Proposition 2.5.
Proof. We first show that

(E.1)
∑

m≥m0>0

1

mγ
≤ m1−γ

0

1 − 21−γ
∀ γ > 1, m ∈ N.
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Let p0 and p1 be positive integers such that

(E.2) 2p0−1 ≤ m0 < 2p0 , 2p1−1 ≤ Nm < 2p1 ;

then

Nm∑
m=m0

1

mγ
≤

2p1−1∑
m=2p0−1

1

mγ

=

[
1

(2p0−1)γ
+ · · · + 1

(2p0 − 1)γ

]
+ · · · +

[
1

(2p1−1)γ
+ · · · + 1

(2p1 − 1)γ

]
≤ 2p0−1 · 1

2(p0−1)γ
+ · · · + 2p1−1 · 1

2(p1−1)γ

=
1

2(p0−1)(γ−1)
+ · · · + 1

2(p1−1)(γ−1)
+ · · ·

=
1

1 − 21−γ
·
[
2−(p0−1)(γ−1)

(
1 − 2−(p1−p0)(γ−1)

)]
.

This summation converges when γ > 1. Taking the limit as Nm → ∞, we get

(E.3)
∑

m≥m0>0

1

mγ
≤ 2−(p0−1)(γ−1)

1 − 21−γ
.

As 2p0−1 ≤ m0, this is exactly what we want.
We are now ready to prove Proposition 2.5. By assumption, the localized function

φ(t) attains its maximum at t = 0. Let this maximum be C; then

φ(0) = C.

We also know, for n ∈ Z, that

(E.4) |φ(n)| ≤ C

(1 + n2)γ/2
, γ > 1.

This “localization” can be used to estimate bounds for the entries of matrix H:

Hnm =
∑
l∈Z

φj2
m+lN (tn)

=
∑
l∈Z

√
Nφ

(
N

n

N
−m− lN

)
=
∑
l∈Z

√
Nφ(n−m− lN), n,m = 0, 1, . . . , N − 1.(E.5)

Obviously, H = {Hnm}N×N forms a circulant matrix (see, e.g., Davis (1979)). On
the diagonal,

(E.6) Hnn =
√
N
∑
l∈Z

φ(−lN) = C
√
N + rnn,

where



MULTISCALE WINDOW TRANSFORM 465

|rnn| =
√
N

∑
l∈Z, |l|
=0

|φ(lN)|

≤
√
N ·

∑
|l|
=0

C

(1 + |lN |2)γ/2

< C
√
N ·

∑
|l|>0

1

|lN |γ

= 2C
√
N

1

Nγ

∞∑
l=1

1

lγ

≤ 2C

1 − 21−γ

√
N

1

Nγ
by (E.1).(E.7)

The off-diagonal elements, on the other hand, are equal to

(E.8) Hnm =
∑
l∈Z

√
Nφ(n−m− lN), where 0 < |n−m| < N.

We now examine
∑

m
=n |Hnm|. As H is circulant, this sum is the same for all 0 ≤
n < N . It suffices to consider the case n = 0:

∑N−1
m=1 |H0m|. For convenience, split

the summation into two parts:

|H0m| ≤
√
N
∑
l∈Z

|φ(m + lN)|

≤
√
N
∑
l∈Z

C

[1 + (m + lN)2]
γ/2

= C
√
N

{
1

[1 + m2]
γ/2

+
1

[1 + (m−N)2]
γ/2

}
︸ ︷︷ ︸

(PRIN)m

+ (OTHER)m,(E.9)

where

(E.10) (OTHER)m = C
√
N

1

[1 + (m + N)2]
γ/2︸ ︷︷ ︸

(I)

+ C
√
N
∑
|l|≥2

1

[1 + (m + lN)2]
γ/2︸ ︷︷ ︸

(II)

.

As m > 0, we have

(I) <
1

Nγ

and

(II) =
∑
l≥2

1

[1 + (m + lN)2]
γ/2

+
∑
l≥2

1

[1 + (m + lN)2]
γ/2

(E.11)

<
∑
l≥2

1

(N − 1 − lN)γ
+
∑
l≥2

1

[−(N − 1) + lN ]γ
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= 2
∑
l≥2

1

[(l − 1)N + 1]γ
< 2

∑
l′≥1

1

(l′N)γ

=
2

Nγ

∑
l′≥1

1

l′γ
≤ 2

1 − 21−γ
· 1

Nγ
for γ > 1

by what we showed in the beginning. Hence, in (E.9),

(E.12) (OTHER)m < C
√
N

[
1 +

2

1 − 21−γ

]
1

Nγ
.

So

N−1∑
m=1

(OTHER)m < C
√
N

[
1 +

2

1 − 21−γ

]
1

Nγ
· (N − 1)

< C
√
N

[
1 +

2

1 − 21−γ

]
1

Nγ−1
.(E.13)

The other part, (PRIN)m, sums to

N−1∑
m=1

(PRIN)m =

N−1∑
m=1

C
√
N

{
1

(1 + m2)γ/2
+

1

[1 + (m−N)2]γ/2

}

= 2C
√
N

N−1∑
m=1

1

(1 + m2)γ/2

= 2C
√
N

[
1

2γ/2
+

N−1∑
m=2

1

mγ

]

< 2C
√
N

[
1

2γ/2
+

21−γ

1 − 21−γ

]
(E.14)

by (E.1). Put (PRIN)m and (OTHER)m together,
(E.15)

N−1∑
m=1

|H0m| < C
√
N

[
2

(
1

2γ/2
+

1

2γ−1(1 − 21−γ)

)
+

1

Nγ−1

(
1 +

2

1 − 21−γ

)]
,

and compare
∑N−1

m=1 |H0m| to |H00|:

|H00| −
N−1∑
m=1

|H0m| =
∣∣∣C√

N + r00

∣∣∣− N−1∑
m=1

|H0m|

> C
√
N − |r00| −

N−1∑
m=1

|H0m|.

Substitution of (E.7) and (E.15) for |r00| and
∑N−1

m=1 |H0m| gives
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|H00| −
N−1∑
m=1

|H0m|

(E.16)

> C
√
N

{
1 − 2

1 − 21−γ

1

Nγ
−
(

2

2γ/2
+

2

2γ−1(1 − 21−γ)

)
− 1

Nγ−1

(
1 +

2

1 − 21−γ

)}
> C

√
N

{
1 − 2

2γ/2
− 2

2γ−1(1 − 21−γ)
−
(

1 +
4

1 − 21−γ

)
1

Nγ−1

}
,

which is greater than zero given that (2.12) is satisfied. This is to say, H is strictly
diagonally dominant under condition (2.12). Nonsingularity follows immediately from
this diagonal dominance (see Ortega (1987)).
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