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Abstract

We put the concept of information transfer on a rigorous footing and establish for it a formalism within the framework of discrete maps.
The resulting transfer measure possesses a property of directionality or transfer asymmetry as emphasized by Schreiber [T. Schreiber, Measuring
information transfer, Phys. Rev. Lett. 85 (2) (2000) 461]; it also verifies the transfer measure for two-dimensional systems, which was obtained
by Liang and Kleeman [X.S. Liang, R. Kleeman, Information transfer between dynamical system components, Phys. Rev. Lett. 95 (24) (2005)
244101] through a different avenue. Connections to classical formalisms are explored and applications presented. We find that, in the context of
the baker transformation, there is always information flowing from the stretching direction to the folding direction, while no transfer occurs in
the opposite direction; we also find that, within the Hénon map system, the transfer from the quadratic component to the linear component is of a
simple form as expected on physical grounds. This latter result is unique to our formalism.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Information transfer between dynamical system components
is an important concept for nonlinear multivariate time
series coherence analysis (e.g., [2,4,9,20–23]), communication
(e.g., [18]), and predictability study [3,11–13] in neurology,
atmosphere–ocean science, and many other scientific areas.
Information transfer is also seen in our daily life. For
example, it has been argued intuitively that, in kneading dough,
information is lost continually from the stretching direction
to the folding direction (e.g., [14]). A most recent review
with particular focus on neurophysiology is Pereda et al. [19];
reviews on a more generic basis of nonlinear signal analysis
can be found in the books by Abarbanel [1] and Kantz and
Schreiber [10].

Many studies of information transfer are based on mutual
information, a natural measure of the independence between
two random variables [see [1] and the references there in]. It is
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well known that mutual information does not possess transfer
directionality or asymmetry, a desired property emphasized by
Schreiber [22]. A variety of formalisms have bee proposed to
address this issue, among which are the time delayed mutual
information (e.g., [9,23]) and, in the context of a Markov
chain, the more sophisticated transfer entropy [8,22]. These
formalisms generally work well in their specific hierarchies and
respective contexts.

However, we still lack a formalism to have the unidirectional
or asymmetric transfer of information rigorously represented.
Here we intend to establish one to fill the gap. We want to
show that, when dynamics is fully specified as is the case with
many physical problems such as the atmosphere then such a
program is feasible. The basic idea has been elucidated within
the framework of a two-dimensional (2D) system in [15], which
we will refer to as LK05 henceforth. This paper generalizes
the 2D formalism to systems of arbitrary dimensionality. As
we will soon see, the 2D case is quite special and cannot be
directly extended and so a different route will be chosen for the
establishment of a general formalism. This paper is concerned
with discrete maps only. Systems described by continuous flows
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will be investigated in detail as a limiting case in the second part
of this study [16].

In the following we first present the mathematical
framework, within which the 2D case studied in LK05 is
briefly reviewed, and our strategy for the problem proposed.
We then derive the measure of information transfer. Properties
are explored (Section 3) to see whether the measure reduces to
that of LK05 when dimensionality becomes 2, and whether the
transfer thus obtained meets the unidirectionalism requirement.
For the sake of comparison, connections are established in
Section 4 to the classical formalism. In Section 5, we present
two applications with the baker transformation and the Hénon
map. We choose these two problems not only because we want
to understand how information is transferred between their
respective components, but also because they may serve to
validate our formalism. This paper is summarized in Section 6.

2. Formalism

2.1. Mathematical framework

Consider a stochastic process {X, τ }, with τ positive integers
signifying discrete time steps, and X = (X1, X2, . . . , Xn) an
array of random variables. We want to know how information
is transferred from X j to X i , for any i, j = 1, . . . , n, i 6= j .
Without loss of generality, we need only consider the case
i = 1, j = 2.

Consider an n-dimensional transformation

Φ : Ω 7→ Ω ,

(x1, x2, . . . , xn) 7→ (Φ1(x),Φ2(x), . . . ,Φn(x)),
(1)

where x = (x1, . . . , xn) ∈ Ω correspond to the random
variables X. In this study, the sample space Ω is assumed
to be a Cartesian product of Ω1,Ω2, . . . , and Ωn , in which
x1, x2, . . . , xn are respectively lying (Ωi open in R, i =

1, . . . , n). Let ρ = ρ(x) be the joint density of X1, X2, . . . , and
Xn at step τ . Its evolution is steered by the Frobenius–Perron
operator (F–P operator henceforth)

P : L1(Ω) 7→ L1(Ω),

given by, in a loose sense,∫
ω

Pρ(x)dx =

∫
Φ−1(ω)

ρ(x) dx, (2)

for any ω ⊂ Ω . [For a rigorous treatment with measure theory,
see [14].] When Φ is nonsingular and invertible, Φ can be
explicitly written out:

Pρ(x) = ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ (3)

where J is the determinant of the Jacobian of Φ:

J = J (x) = det
[
∂Φ(x1, x2, . . . , xn)

∂(x1, x2, . . . , xn)

]
and J−1 its inverse. The joint density ρ = ρ(x) defines an
entropy (Shannon entropy)

H(X) = −

∫
Ω

ρ(x) log ρ(x) dx. (4)
If a particular component is of interest, say X1, we need the
marginal entropy

H1 = H(X1) = −

∫
Ω1

ρ1(x1) log ρ(x1) dx1, (5)

where ρ1 = ρ1(x1) =
∫
Ω2n

ρ(x1, x2, . . . , xn)dx2dx3 . . . dxn is
the marginal distribution of X1. For convenience here we have
used the shorthand

Ω jn = Ω j × Ω j+1 × · · · × Ωn, 1 ≤ j < n, (Ω1n = Ω),

and will keep the convention throughout this paper. The entropy
of X1 evolves as Φ is applied. We are interested in how
entropy is transferred from X2 to X1 in the course of the
evolution. This is the foundation of the previous formalisms
of information transfer, which is measured by the amount of
entropy thus transferred (cf. Section 4). The objective of this
study is, therefore, to find this transfer, which we will denote as
T2→1 hereafter, when Φ applies as time goes from step τ to step
τ +1. The following subsections are devoted to the formulation
of T2→1.

2.2. The 2D case: A brief summary of the LK05 formalism

In LK05, we have established a formalism for the entropy
transfer T2→1 in the context of a 2D system. The fundamental
idea is that, the increase in H1, ∆H1, can be decomposed into
two mutually exclusive parts: one from X1 itself, written as
∆H∗

1 ; another one from X2. Clearly the latter is the transfer
T2→1. We may therefore find T2→1 through computing the
difference between ∆H1 and ∆H∗

1 . For a system with dynamics
given (represented as the transformation Φ), ∆H1 is fully
known. In fact,

∆H1 = −

∫
Ω1

(Pρ)1(x1) log(Pρ)1(x1) dx1 − H1

= −

∫
Ω1

(∫
Ω2n

Pρdx2 . . . dxn

)
× log

(∫
Ω2n

Pρdx2 . . . dxn

)
dx1

+

∫
Ω1

ρ1 log ρ1 dx1. (6)

Here we use (Pρ)1 to indicate the marginal distribution of X1
at time step τ + 1. If we can find ∆H∗

1 , then T2→1 is obtained
accordingly.

The evaluation of ∆H∗

1 is based on a law governing the
evolution of the entropy H of a discrete system under an
invertible transformation Φ:

∆H = E log |J | , (7)

where J is the determinant of the Jacobian of Φ, and E(·)

the mathematical expectation over the whole sample space. Eq.
(7) was obtained by LK05. It states that the entropy increase
for a discrete system upon one application of an invertible
transformation is simply the average logarithm of the rate of
area change under that transformation. Since (7) applies to
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any systems with invertible transformations, one may argue
heuristically that, when only X1 is considered, the change of
the marginal entropy H1, or ∆H∗

1 as we previously denoted, is

∆H∗

1 = E log |J1|, (8)

where J1 =
∂Φ1(x)

∂x1
, and E(·) is, as in (7), over the whole space

Ω . Subtracting (8) from (6), we arrive at

T2→1 = ∆H1 − ∆H∗

1 = ∆H1 − E log |J1|. (9)

This is the entropy transfer from X2 to X1, holding when n = 2
and Φ1 is invertible.

2.3. The general case

The formalism (9) of entropy transfer seems to be natural.
Two limitations, however, prevent it from being applicable to
general problems. The first regards the invertibility of Φ1. In
many interesting problems, even though the mapping Φ as a
whole is invertible, its components, say Φ1, are more often than
not noninvertible. The two applications which we will present
toward the end of this paper are just such examples. Eq. (9)
must be extended to have noninvertibility included.

A bigger problem with the above formalism lies in the fact
that the strategy to obtain (9) only works for 2D systems. When
the dimensionality n ≥ 3, it becomes invalid, otherwise the
transfer thus obtained would be the bulk transfer to X1 from
all other components. We would not get T2→1 unless we can
differentiate the contributions of X j , j = 3, 4, . . . n, from that
of X2, which is, unfortunately, by no means an easy task.

Out of the problem comes the solution. The ∆H∗

1 in (9), on
the other hand, may be equally understood as the evolution of
H1 with the influence from X2 excluded, namely, the change
of H1 with x2 frozen at step τ . In this spirit, we may then
partition the mechanisms governing the evolution of H1 into
two disjoint subsets: One is the transfer from X2, another one
the evolution without influence from X2. The transfer is then the
difference between the two. This partitioning does not have any
restraints on n. The formalism of transfer is therefore applicable
to systems of arbitrary dimensionality.

Given the dynamics, it is easy to obtain ∆H1. The key to
the formalism is thus to find the contribution to the increase of
H1 with X2 excluded. In formal language, this is the entropy
increase in direction 1 as the system goes from step τ to τ + 1
under Φ with x2 frozen instantaneously at time step τ , given
X1(τ ). We denote it as ∆H1\2. For later convenience, this index
notation is extended to any symbol in the form \j to signify that
component j is frozen, or that component j is excluded from
a set of n independent variables. When ρ is referred to, this
simply means marginalization of that component, e.g.,

ρ\2 = ρ\2(x1, x3, . . . , xn) =

∫
Ω2

ρ(x1, x2, x3, . . . , xn)dx2, (10)

ρ\1\2 = ρ\1\2(x3, . . . , xn) =

∫
Ω1×Ω2

ρ(x1, x2, x3, . . . , xn)

dx1dx2. (11)

We will use this convention henceforth without further
clarification.
To find ∆H1\2, we need to evaluate H1\2(τ + 1), the
marginal entropy for the first component evolved from H1 with
contribution from X2 excluded from step τ to τ + 1. For this
purpose, consider the quantity

f ≡ − log(Pρ)1\2(y1), (12)

where y1 = Φ1(x), and (Pρ)1\2(y1) is the marginal density in
direction 1 at step τ + 1, as the density ρ\2 evolves from step τ

to step τ + 1 under the transformation:

Φ\2 :


y1 = Φ1(x1, x2, x3, . . . , xn)

y3 = Φ3(x1, x2, x3, . . . , xn)
...

...

yn = Φn(x1, x2, x3, . . . , xn)

(13)

i.e., the map Φ with x2 frozen instantaneously at τ as a
parameter. Note here we use y1 = Φ1(x) to represent the state
of component 1 at step τ +1 (x1 is for that at step τ ). We do not
use x1 with some superscript or subscript in order to avoid any
possible confusion in distinguishing the states of X1 at these
two time steps.

Following the definition of Shannon entropy, H1\2(τ + 1)

is in the form of some average (expectation) of f . In other
words, it is equal to the integration of f times some probability
density function over the corresponding sample space. The first
density to be multiplied is (Pρ)1\2(y1), but f also depends
on x2 as well as y1. We need another density for X2. Recall
that the freezing of x2 is performed on interval [τ, τ + 1],
given all other components at time step τ . What we need is
therefore the conditional density of X2 on X1, X3, . . . , Xn at τ ,
ρ(x2|x1, x3, . . . , xn). Among the newly introduced variables,
x3, x4, . . . , xn should be averaged out, so another density
ρ3...n(x3, . . . , xn) should be multiplied, while by (13) x1 can
be viewed as a function of y1 and x3, x4, . . . , xn . Based on
these arguments, the marginal entropy for the first component
evolved from H1 with contribution from X2 excluded from step
τ to τ + 1 is

H1\2(τ + 1) = −

∫
Ω

(Pρ)1\2(y1) · log(Pρ)1\2(y1) ·

ρ(x2|x1, x3, . . . , xn) · ρ3...n(x3, . . . , xn)

× dy1dx2dx3 . . . dxn . (14)

So

∆H1\2 = H1\2(τ + 1) − H1(τ ). (15)

The information transfer from X2 to X1 is the difference
between ∆H1 and ∆H1\2. Subtraction of (15) from (6) yields

T2→1 = −

∫
Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

+

∫
Ω

(Pρ)1\2(y1) · log(Pρ)1\2(y1)

·ρ(x2|x1, x3, . . . , xn)

·ρ3...n(x3, . . . , xn) dy1dx2dx3 . . . dxn . (16)

Note that y1 = Φ1(x) and x1 are the state variables at
different time steps, and that the conditional probability of
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1 Throughout this proof, Φ−1
1\2 ω1 and Φ−1

1 ω1 should be understood
respectively as their first factors (i.e., the projection of the Cartesian product
on the subspace of x1). We abuse the notation for simplicity.
x2 is on x1 instead of y1. In arriving at (16), no issue about
the invertibility of Φ or any of its components has been
invoked. The formalism is therefore valid for a transformation
of arbitrary dimensionality.

Likewise, for any i, j = 1, 2, . . . , n, i 6= j , the entropy
transfer from X j to X i is

T j→i = −

∫
Ωi

(Pρ)i (yi ) · log(Pρ)i (yi ) dyi

+

∫
Ω

(Pρ)i\j (yi ) · log(Pρ)1\j (yi )

·ρ(x j |x1, x2, . . . , x j−1, x j+1, . . . , xn)

·ρ\i\j dx1dx2 . . . dxi−1dyi dxi+1 . . . dxn . (17)

3. Properties

The transfer measure developed above possesses some
important properties. This section presents two of them in the
form of theorems. Again, in the interest of the readership, we
will avoid considering measurability whenever raised in the
derivations or proofs.

First, we expect our formalism verifies the case for 2D
systems, which we obtained rigorously in LK05 via a different
route. This forms the following theorem:

Theorem 1. When n = 2 and Φ1 is invertible, ∆H1\2 =

E log |J1|.

Proof. If n = 2,

∆H1\2 = −

∫∫
Ω1×Ω2

(Pρ)1\2(y1)

· log(Pρ)1\2(y1) · ρ(x2|x1) dy1dx2

+

∫
Ω1

ρ1 log ρ1dx1,

where y1 = Φ1(x1, x2), and (Pρ)1\2 the marginal distribution
of X1 evolving from ρ\2 = ρ1 upon one transformation of
Φ\2 = Φ1. When Φ1 is invertible, J1 =

∂Φ1
∂x1

6= 0, by (3),

(Pρ)1\2(y1) = ρ
[
Φ−1

1 (y1, x2)
] ∣∣∣J−1

1

∣∣∣
= ρ1(x1)

∣∣∣J−1
1

∣∣∣ . (18)

So

∆H1\2 = −

∫∫
ρ1(x1)

∣∣∣J−1
1

∣∣∣ log
(
ρ1(x1)

∣∣∣J−1
1

∣∣∣)
ρ(x2|x1) |J1| dx1dx2 +

∫
ρ1 log ρ1 dx1

= −

∫∫
ρ1(x1) ρ(x2|x1) log

∣∣∣J−1
1

∣∣∣ dx1dx2

=

∫∫
ρ(x1, x2) log |J1| dx1dx2

= E log |J1| . � (19)

Information transfer is by observation not symmetric
between two components, and Schreiber [22] emphasized that
a faithful formalism must be able to reflect this asymmetry. In
this context, Schreiber’s argument can be put in a more concrete
and quantitative way:

Theorem 2. If Φ1 is independent of x2, then T2→1 = 0; in the
same time T1→2 need not be zero unless Φ2 does not rely on x1.

Proof. What we need to show is that

H1(τ + 1) = −

∫
Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1 (20)

H1\2(τ + 1) = −

∫
Ω

(Pρ)1\2(y1) · log(Pρ)1\2(y1)

·ρ(x2|x1, x3, . . . , xn)

·ρ3...n(x3, . . . , xn) dy1dx2dx3 . . . dxn (21)

are identical when Φ1 is independent of x2. For an arbitrary
subset of Ω1, ω1 ⊂ Ω1, we have∫

ω1

(Pρ)1\2(x1) dx1 =

∫
ω1×Ω3n

(Pρ)\2(x1, x3, . . . , xn)

× dx1dx3 . . . dxn

=

∫
Φ−1

\2 (ω1×Ω3n)

ρ\2(x1, x3, . . . , xn)

× dx1dx3 . . . dxn

by (2) and the definition of (Pρ)\2. Note1

Φ−1
\2 (ω1 × Ω3n) = Φ−1

1\2 ω1 × Ω3n .

So∫
ω1

(Pρ)1\2(x1) dx1 =

∫
Φ−1

1\2 ω1

dx1

∫
Ω3n

ρ\2(x1, x3, . . . , xn)

× dx3 . . . dxn

=

∫
Φ−1

1\2 ω1

ρ1(x1) dx1

=

∫
Φ−1

1 ω1

ρ1(x1) dx1

because Φ1 (and hence Φ−1
1 ) has no dependence on x2.

On the other hand,∫
ω1

(Pρ)1(x1) dx1 =

∫
ω1×Ω2n

Pρ(x) dx

=

∫
Φ−1(ω1×Ω2n)

ρ(x) dx

=

∫
Φ−1

1 ω1×Ω2n

ρ(x) dx

=

∫
Φ−1

1 ω1

dx1

∫
Ω2n

ρ(x)dx2dx3 . . . dxn

=

∫
Φ−1

1 ω1

ρ1(x1) dx1.

So∫
ω1

(Pρ)1\2(x1) dx1 =

∫
ω1

(Pρ)1(x1) dx1
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for any ω1 ⊂ Ω1. This is to say,

(Pρ)1\2 = (Pρ)1 (22)

almost everywhere when Φ1 is independent of x2, i.e., the case
of inequality has measure zero. (A rigorous treatment requires
a consideration of measurability, which is beyond the scope of
this study.) Eq. (21) thus becomes

H1\2(τ + 1) = −

∫
Ω

(Pρ)1(y1) · log(Pρ)1(y1)

·ρ(x2|x1, x3, . . . , xn)

·ρ3...n(x3, . . . , xn) dy1dx2dx3 . . . dxn .

Observe that (Pρ)1 has no dependence on xi , for i = 2, . . . , n.
So

H1\2(τ + 1) = −

∫
Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

·

[∫
Ω2

∫
Ω3n

ρ(x2|x1, x3, . . . , xn)

·ρ3...n(x3, . . . , xn)dx2dx3 . . . dxn

]
= −

∫
Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

= H1(τ + 1),

where we have used the fact that the part in the square bracket
integrates to 1, as x2 can be first integrated out∫
Ω2

ρ(x2|x1, x3, . . . , xn)dx2 = 1,

and the remaining integral
∫
Ω3n

ρ3...n(x3, . . . , xn)dx3 . . . dxn is
also equal to 1. Therefore

T2→1 = [H1(τ + 1) − H1(τ )] − [H1\2(τ + 1) − H1(τ )] = 0,

which is what we want to prove. �

Note that the above theorem holds not just between X1 and X2,
but between X i and X j for any i 6= j .

Corollary 3. If Φi is independent of x j , 1 ≤ i, j ≤ n, i 6= j ,
then T j→i = 0.

To prove, we just need reorder the components of X to have X i
and X j placed in the first and the second slots of the array so
that the above proof applies.

Theorem 2 and Corollary 3 state that transfer of information
in one direction yields no hint about the other direction.
Particularly, when X i evolves independently of X j , there is
no transfer from X j to X i , but at the same time there could
be information flowing in the opposite direction provided that
X j relies on X i to grow. This property of transfer asymmetry
or unidirectionalism makes information transfer conceptually
distinct from transfers of other physical quantities such as
energy, in which transfer symmetry holds.

4. Connection to previous formalisms

We have adopted a route distinctly different from the
classical ones in deriving information transfer. However, it is
interesting to note that our formalism is physically consistent
with the classical formalism. Particularly, it is consistent with
Schreiber’s transfer entropy [22]. We have mentioned this in
LK05. In the following we show how.

Let P denote the probability mass function. In the case of a
Markov chain of order one, the transfer entropy from X2 to X1
is, at time step τ ,

T S
2→1 =

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log
P(xτ+1

1 |xτ
1 , xτ

2 )

P(xτ+1
1 |xτ

1 )
. (23)

Here the symbol T corresponds to our transfer, and the
superscript S is utilized to signify Schreiber’s formalism. T S

2→1
is a relative entropy-like quantity (see, for example, [5]) which
characterizes the incorrectness when the probability of X1 at
time step τ conditioned on the measurements at previous time
steps is taken as the probability of X1 given the measurements
of both X1 and X2 at their previous time steps. Schreiber uses
it to measure the information transfer from X2 to X1.

Notice the transfer entropy (23) may also be written in the
form of a difference, as in (16),

T S
2→1 = ∆H S

1 − ∆H S
1|2, (24)

where

∆H S
1 = −

∑
P(xτ+1

1 , xτ
1 ) log P(xτ+1

1 , xτ
1 )

+

∑
P(xτ+1

1 , xτ
1 ) log P(xτ

1 ), (25)

and

∆H S
1|2 = −

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log P(xτ+1
1 , xτ

1 , xτ
2 )

+

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log P(xτ
1 , xτ

2 ). (26)

For ∆H S
1 , the second term on the right hand side is

−

∑
P(xτ+1

1 , xτ
1 ) log P(xτ

1 ) = −

∑
P(xτ

1 ) log P(xτ
1 )

= H1(τ );

the first term is also like entropy, but at a time step between τ

and τ + 1. We denote it H1(τ +
1
2 ) for the time being. So

∆H S
1 = H1

(
τ +

1
2

)
− H1(τ ) (27)

is a kind of entropy increase. To see the physical meaning of
∆H S

1|2, introduce two quantities

A =

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log P(xτ
2 ),

B =

∑
P(xτ

1 , xτ
2 ) log P(xτ

2 ).

It is easy to show that both A and B are equal to −H2(τ ). We
may then have (26) first plus A then minus B to get

∆H S
1|2 =

[
−

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log P(xτ+1
1 , xτ

1 , xτ
2 ) + A

]
−

[
−

∑
P(xτ

1 , xτ
2 ) log P(xτ

1 , xτ
2 ) + B

]
= −

∑
P(xτ+1

1 , xτ
1 , xτ

2 ) log P(xτ+1
1 , xτ

1 |xτ
2 )

+

∑
P(xτ

1 , xτ
2 ) log P(xτ

1 |xτ
2 ).
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It is now clear that the last term on the right hand side is the
conditional entropy of X1 on X2 at time step τ , H1|2(τ ), while
the first term may also be understood as the conditional entropy
of X1 on X2 at some time step between τ and τ + 1, denoted
H1|2(τ +

1
2 ). So ∆H S

1|2 describes some entropy increment of X1
conditioned on X2.

Schreiber’s transfer entropy is the difference between ∆H S
1

and ∆H S
1|2. These two terms correspond to our ∆H1 in (6)

and ∆H1\2 in (15), respectively. In a sense, the freezing of x2
instantaneously as time goes from τ to τ + 1 can be viewed as
a kind of conditioning on X2. Our formalism is thus physically
consistent with the transfer entropy (23) or (24) in the context
of a Markov chain of order one.

But our formalism is obviously different from the transfer
entropy. The difference lies in the following two aspects:
(a) The entropy increases in (24) are those from step τ to
somewhere between τ and τ + 1, while in our formalism, both
∆H1 and ∆H1\2 describe the entropy variations from step τ to
step τ + 1; (b) although qualitatively there is some similarity
between the conditioning in ∆H S

1|2 and the freezing in ∆H1\2,
quantitatively they are not identical. These differences may give
different results for the same problem. For example, there is no
property like Theorem 1 with (24). We will see more examples
in the following applications.

5. Applications

We now calculate (16) or (17) for the well known baker
transformation and Hénon map. We choose these two problems
not only because their information transfers per se are
interesting, but also because they may in some sense serve
to validate our formalism. Both maps have one or more
noninvertible components, and so the simple formalism (9)
does not apply.

5.1. Baker transformation

It has been argued intuitively that, in applying the
baker transformation which mimics the kneading of dough,
information flows continuingly from the stretching direction to
the folding direction, while no transfer occurs in the opposite
direction (see [14]; similar arguments can also be seen in [6,7,
17]). We mentioned this in the beginning of the paper, and want
to see whether this is the case with our formalism.

The baker transformation is defined as a mapping Φ : Ω →

Ω , Ω = [0, 1] × [0, 1], given by

Φ(x1, x2) =


(

2x1,
x2

2

)
0 ≤ x1 ≤

1
2
, 0 ≤ x2 ≤ 1(

2x1 − 1,
1
2

x2 +
1
2

)
1
2

< x1 ≤ 1, 0 ≤ x2 ≤ 1.

(28)

It is invertible, and measure preserving (J = 1), as is easy to
check. By Eq. (7) this means that its entropy stays unchanged.
(But one of its components is not. See below.) To compute
the information transfer, we need the F–P operator P , which
can easily evaluated by taking advantage of the invertibility
(cf. Appendix):
P(x1, x2) =


ρ
( x1

2
, 2x2

)
, 0 ≤ x2 <

1
2
,

ρ

(
1 + x1

2
, 2x2 − 1

)
,

1
2

≤ x2 ≤ 1.
(29)

Consider the transfer from X2 to X1 first. Upon one
transformation, the marginal density increases from

ρ1 =

∫ 1

0
ρ(x1, x2)dx2

to∫ 1

0
Pρ(x1, x2)dx2 =

∫ 1/2

0
ρ
( x1

2
, 2x2

)
dx2

+

∫ 1

1/2
ρ

(
x1 + 1

2
, 2x2 − 1

)
dx2

=
1
2

∫ 1

0

[
ρ
( x1

2
, x2

)
+ ρ

(
x1 + 1

2
, x2

)]
dx2

=
1
2

[
ρ1

( x1

2

)
+ ρ1

(
x1 + 1

2

)]
, (30)

where (29) has been used in the derivation.
The baker transformation as a whole is invertible. Its x1

direction, however, is not. Consider X1 only, the transformation
reduces to a dyadic mapping, Φ1 : [0, 1] → [0, 1], Φ1(x1) =

2x1 (mod 1). It has an F–P operator

(Pρ)1\2(x1) =
1
2

[
ρ1

( x1

2

)
+ ρ1

(
1 + x1

2

)]
(31)

(see Appendix for details). This is exactly the same as (30),
implying that

T2→1 = 0, (32)

which is just as expected.
Now compute the transfer from X1 to X2. As above, first

compute the marginal distribution∫ 1

0
Pρ(x1, x2) dx1

=


∫ 1

0
ρ
( x1

2
, 2x2

)
dx1, 0 ≤ x2 <

1
2
;∫ 1

0
ρ

(
x1 + 1

2
, 2x2 − 1

)
dx1,

1
2

≤ x2 ≤ 1.

(33)

This substituted in

∆H2 = −

∫ 1

0

∫ 1

0
Pρ(x1, x2)

·

[
log

(∫ 1

0
Pρ(λ, x2)dλ

)]
dx1dx2

+

∫ 1

0

∫ 1

0
ρ(x1, x2)

·

[
log

(∫ 1

0
ρ(λ, x2)dλ

)]
dx1dx2, (34)
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after a series of transformation of variables, gives

∆H2 = − log 2 + (I + II), (35)

where

I =

∫ 1

0

∫ 1/2

0
ρ(x1, x2)

·

[
log

∫ 1
0 ρ(λ, x2)dλ∫ 1/2

0 ρ(λ, x2)dλ

]
dx1dx2, (36)

II =

∫ 1

0

∫ 1

1/2
ρ(x1, x2)

·

log

∫ 1
0 ρ(λ, x2)dλ∫ 1

1/2 ρ(λ, x2)dλ

 dx1dx2. (37)

Note both I and II are nonnegative, because ρ(x1, x2) ≥ 0 and∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1/2

0
ρ(x1, x2) dx1 (38)∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1/2

0
ρ(x1, x2) dx1. (39)

Moreover, these equalities cannot hold simultaneously. So I +II
is strictly positive.

On the other hand, in the x2 direction the transformation is
invertible and J2 is equal to a constant 1

2 . By Theorem 1,

∆H2\1 = E log
1
2

= − log 2. (40)

So,

T1→2 = ∆H2 − ∆H2\1 = I + II > 0, (41)

i.e., there is always information flowing from X1 to X2.
Eqs. (32) and (41) show that information flows continuously

from the stretching direction to the folding direction (T1→2 >

0), while no transfer occurs in the opposite direction (T2→1 =

0). These are just what we have expected with the baker
transformation. Our formalism thus produces a result agreeing
well with intuition.

5.2. Information transfer in the Hénon map

The Hénon map Φ = (Φ1,Φ2) : R2
7→ R2 is defined such

that{
Φ1(x1, x2) = 1 + x2 − ax2

1 ,

Φ2(x1, x2) = bx1,
(42)

with a > 0, b > 0. Like the baker transformation, it is also
invertible. In fact, the inverse mapping is

Φ−1(x1, x2) =

( x2

b
, x1 − 1 +

a
b2 x2

2

)
. (43)

By (3),

Pρ(x1, x2) = ρ(Φ−1(x1, x2))|J−1
|

=
1
b
ρ
( x2

b
, x1 − 1 +

a
b2 x2

2

)

≡
1
b
ρ(y, x1 − 1 + ay2), (44)

where for convenience y is used to denote x2
b . We hereafter

compute the transfers between X1 and X2. (a) T2→1: Transfer
from the linear component to the quadratic component

According to (16), we need to evaluate (Pρ)1 and (Pρ)1\2.
The former is

(Pρ)1(x1) =

∫
R
Pρ(x1, x2)dx2

=

∫
R

1
b
(y, x1 − 1 + ay2)dx2

=

∫
R

ρ(y, x1 − 1 + ay2)dy

= ρ2(x1).

(Note the argument: it is x1, not x2.) To compute (Pρ)1\2, let

x ′

1 ≡ Φ1(x1) = 1 + x2 − ax2
1 ,

where x2 appears as a parameter. From this it is easy to obtain

Φ−1
1 ((−∞, x ′

1]) =

−∞, −

√
1 + x2 − x ′

1
a


∪

√1 + x2 − x ′

1
a

, ∞

 .

By the formula for F–P operator evaluation (see [14])

(Pρ)1\2(x ′

1) =
d

dx ′

1

∫
Φ−1

1 ((−∞,x ′

1])
ρ1(s)ds

=
d

dx ′

1

∫
−

√
1+x2−x ′

1
a

−∞

ρ1(s)ds

+
d

dx ′

1

∫
∞√
1+x2−x ′

1
a

ρ1(s)ds

=
1

2
√

a(1 + x2 −x ′

1)
[ρ]1

−

√
1 + x2 − x ′

1
a


+ ρ1

√1 + x2 − x ′

1
a

 (x ′

1 < 1 + x2)

=
1

2a|x1|
[ρ1(−x1) + ρ1(x1)] .

(recall x ′

1 = 1 + x2 − ax2
1)

This and the above expression for (Pρ)1, together with the fact
J1 =

∂Φ1
∂x1

= −2ax1, substituted into (16) gives

T2→1 = −

∫
R
(Pρ)1(x1) · log(Pρ)1(x1) dx1

+

∫∫
R×R

(Pρ)1\2(x ′

1) log(Pρ)1\2(x ′

1)

·ρ(x2|x1) · |J1| dx1dx2



8 X.S. Liang, R. Kleeman / Physica D 231 (2007) 1–9
= −

∫
R

ρ2(x1) log ρ2(x1) dx1

+

∫
R

ρ1(−x1) + ρ1(x1)

2a|x1|

· log
ρ1(−x1) + ρ1(x1)

2a|x1|
· | − 2ax1| dx1

= H2 + 2
∫

∞

0
[ρ1(−x1) + ρ1(x1)]

· log
ρ1(−x1) + ρ1(x1)

2ax1
dx1. (45)

Eq. (45) states that the entropy transferred from the linear
component (X2) to the quadratic component (X1) is equal to
the entropy of X2 (H2) modified by a part arising from the
involvement of x1 in Φ1 [cf. (42)].

(b) T1→2: Transfer from the quadratic component to the
linear component

From (17),

T1→2 = −

∫
R
(Pρ)2(x2) · log(Pρ)2(x2)dx2∫

R
(Pρ)2\1(x ′

2) · log(Pρ)2\1(x ′

2)

·ρ(x1|x2) · |J2| dx1dx2,

where x ′

2 = Φ2(x1, x2). Notice J2 =
∂Φ2
∂x2

= 0, and

(Pρ)2(x2) =

∫
R
Pρ(x1, x2) dx1

=

∫
R

1
b
ρ

(
x2

b
, x1 − 1 + a

x2
2

b2

)
dx1

=
1
b

∫
R

ρ(y, ξ) dξ =
1
b
ρ1

( x2

b

)
.

So

T1→2 = −

∫
R
(Pρ)2(x2) · log(Pρ)2(x2)dx2

= −

∫
R

1
b
ρ1

( x2

b

)
· log

[
1
b
ρ1

( x2

b

)]
dx2

= log b + H1. (46)

This is to say, the entropy transfer from the quadratic
component (X1) to the linear component (X2) is the entropy of
X1 plus a part due to expansion/contraction of the total phase
space. Particularly, when b = 1, i.e., when the volume of the
phase space stays invariant, the transfer from X1 to X2 is just
all that X1 possesses.

This simple result of (46) is just what one would expect of
the mapping component Φ2(x1, x2) = bx1 in (42). As Φ2 has
no dependence on x2 itself, the evolution of the entropy of X2 is
all through the transfer from the other component X1. In other
words, T1→2 is just the marginal entropy increase of X2, which
can be easily obtained, without going to the transfer formula
(17). One may check that this is indeed equal to log b + H1.
Among all the existing measures of information transfer, only
our formalism yields a result for the Hénon map which is
consistent with the dynamics (see (46)).
6. Summary

We have presented a rigorous formalism of information
transfer for dynamical systems in terms of discrete mapping.
Properties have been explored, and connections to a classical
formalism established. A transfer measure has been obtained,
validated, and used in two applications.

Information transfer occurs as a system evolves in time. It
is measured by the amount of entropy transferred from one
component to another in the course of this evolution. The
rigorously derived transfer measure is unidirectional, namely,
the information from X i to X j generally implies nothing about
the information transfer in the other direction. Particularly, if X i
evolves independently of X j (i 6= j), then the transfer from X j
to X i is nil; while in the same time there could be a transfer
in the other direction, should X j relies X i to grow. This is
consistent with the property of transfer asymmetry emphasized
by Schreiber [22].

The present formalism generalizes the 2D formalism in
LK05 to maps with noninvertibility and systems with arbitrarily
many dimensions. It is consistent with the 2D transfer measure
previously obtained by different methods. It is also qualitatively
consistent with the previously introduced transfer entropy of
Schreiber.

We have applied the formalism to investigate the information
transfers within the baker transformation and Hénon map.
In both cases, results agree well with the facts observed or
intuitively argued in the literature. For the Hénon map, our
formalism yields a simple and physically clear transfer from
the quadratic component to the linear component; for the baker
transformation, we found that the stretching coordinate always
loses information to the folding coordinate, while no transfer
occurs in the opposite direction.

We close the paper by remarking that through taking limits
we may use a discrete map to approach a continuous flow. In
doing so a formalism of information transfer can be derived for
continuous systems. This will be the subject of the second part
of this study [15].

Acknowledgments

XSL has benefited from Andrew Majda’s lectures on
information theory. This work was supported by NSF under
CMG Grant 0417728 to the Courant Institute of Mathematical
Sciences.

Appendix. The Frobenius–Perron operator for the baker
transformation and the dyadic transformation

For convenience, here we briefly summarize the derivation
of the F–P operators for the baker transformation and the dyadic
transformation. The material is based on [7,14].

A.1. The baker transformation

The baker transformation defined by (28) is invertible, and
the inverse map is given by
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Φ−1(x1, x2)

=


( x1

2
, 2x2

)
0 ≤ x2 ≤

1
2
, 0 ≤ x1 ≤ 1(

x1 + 1
2

, 2x2 − 1
)

1
2

≤ x2 ≤ 1, 0 ≤ x1 ≤ 1.
(A.1)

Using Φ−1, we can find the counterimage of [0, x1]× [0, x2] to
be

(1) 0 ≤ x2 < 1
2

Φ−1([0, x1] × [0, x2]) =

[
0,

x1

2

]
× [0, 2x2];

(2) 1
2 ≤ y ≤ 1

Φ−1([0, x1] × [0, x2]) = Φ−1
(

[0, x1] ×

[
0,

1
2

])
∪Φ−1

(
[0, x1]

[
1
2
, x2

])
=

[
0,

x1

2

]
× [0, 1] ∪

[
1
2
,

x1 + 1
2

]
× [0, 2x2 − 1].

The F–P operator P is thus (see [14]):

Pρ(x1, x2) =
∂2

∂x2∂x1

∫∫
Φ−1([0,x1]×[0,x2])

ρ(s, t) dsdt

which, after a series of transformations, gives

P(x1, x2) =


ρ
( x1

2
, 2x2

)
, 0 ≤ x2 <

1
2
,

ρ

(
1 + x1

2
, 2x2 − 1

)
,

1
2

≤ x2 ≤ 1.
(A.2)

A.2. The dyadic transformation

If only the stretching direction is considered, the baker
transformation (28) is reduced to a dyadic transformation Φ :

[0, 1] 7→ [0, 1], x1 7→ 2x1 (mod 1). It is easy to obtain

Φ−1([0, x1]) =

[
0,

x1

2

]
∪

[
1
2
,

1 + x1

2

]
for x1 < 1. So

Pρ(x1) =
∂

∂x1

∫
Φ−1([0,x1])

ρ(s)ds

=
∂

∂x1

∫ x1/2

0
ρ(s)ds +

∂

∂x1

∫ (1+x1)/2

1/2
ρ(s) ds

=
1
2

[
ρ
( x1

2

)
+ ρ

(
1 + x1

2

)]
.
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