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a b s t r a c t

Predictability is by observation a local notion in complex dynamical systems. Its spatiotemporal structure
implies a flow, or transfer in discrete cases, of information that redistributes the local predictabilitywithin
the state space of concern. Information flow is a fundamental concept in general physics which has
applications in a wide variety of disciplines such as neuroscience, material science, atmosphere–ocean
science, and turbulence research, to name but a few. In this study, it is rigorously formulated with respect
to relative entropy within the framework of a system with many components, each signifying a location
or a structure. Given a component, the mechanism governing the evolution of its predictability can be
classified into two groups, one due to the component itself, another due to a transfer of information
from its peers. A measure of the transfer is rigorously derived, and an explicit expression obtained. This
measure possesses a form reminiscent of that we have obtained before with respect to absolute entropy
in [X.S. Liang and R. Kleeman, A rigorous formalism of information transfer between dynamical system
components, Physica D 227 (2007) 173–182]; in particular, when the system is of dimensionality 2, there
is no difference between the formalisms with respect to absolute entropy and relative entropy, except
for a minus sign. Properties have been explored and discussed; particularly discussed is the property of
asymmetry or causality, which states that information transfer from one component to another carries
no hint about the transfer in the other direction, in contrast to the transfer of other quantities such
as energy. This formalism has been applied to the study of the scale–scale interaction and information
transfer between the first two modes of the truncated Burgers equation. It is found that all 12 transfers
are essentially zero or negligible, save for a strong transfer between the sine components from the low-
frequencymode to the high-frequencymode. That is to say, the predictability of the high-frequencymode
is controlled by the knowledge of the low-frequency mode. This result, though from a highly idealized
system, has interesting implications about the dynamical closure problem in turbulence research and
atmosphere–ocean science, i.e., the subgrid processes may to some extent be parameterized by the large-
scale dynamics. This study can be adopted to investigate the propagation of uncertainties in fluid flows,
which has important applications in problems such as atmospheric observing platform design, and may
be utilized to identify the route of information flowing within a complex network.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In his pioneering work, Lorenz [1] shows that prediction of the
state of a nonlinear dynamical system is impossible beyond a cer-
tain time limit if the system is intrinsically chaotic. This raises a
severe issue in philosophy (e.g. [2]), and since then the problem of
predictability has received enormous attention, in both theoreti-
cal dynamical systems (e.g., [3,4] and references therein) and ap-
plied fields such as atmosphere–ocean science (e.g., [5–20].) The
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past decades have seen a surge of interest in ensemble forecast
(e.g., [21–31]); the fundamental scientific thrust is predictability.

Classically predictability is a global concept over the whole sys-
tem. But in realistic problems, particularly in problems with high
dimensional systems, people have observed that it generally varies
from place to place. For example, Palmer [32] finds that his numer-
ical weather model has different predictability for different flow
regimes; Farrell [8] shows that predictability is structure depen-
dent, and in the linear limit the most unpredictable structure can
be identified; Kleeman [10] realizes the predictability difference
between the El Niño modes; Tribbia [33] and Kleeman [10,12,25]
have studied the predictability evolution in physical space. In other
words, predictability is by observation a local concept, varying in
physical space and/or phase space as it evolves in time.

http://dx.doi.org/10.1016/j.physd.2012.12.011
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The spatiotemporal structure of predictability implies a flow,
or transfer in discrete cases, of information that redistributes
predictability from one place to another within the dynamical
system of concern. This flow or transfer is important in that it
determines how predictability in one place is altered due to other
places, howuncertainties propagate in the system, and hence helps
to identify the source region(s) of unpredictability. An immediate
application is in observing platformdesign. In atmospheric science,
for example, it has been argued that observations should target
these source locations [25,33], in order for a weather forecast
system to increase its forecast skill.

The above problem may be formalized within a framework
of dynamical systems with many components, each component
standing for a physical location or a structure. This way what we
are discussing is essentially about the information transfer be-
tween dynamical system components, a concept which has been
of interest for decades in communication, neuroscience, and non-
linear time series coherence analysis, to name but a few [34–42].
The available formalisms include the delayed mutual information
[41] and themore sophisticated transfer entropy by Schreiber [40].
In relation to this study, these empirical/half-empirical formalisms
have been applied to the investigation of the information flow in
weather forecasts (e.g., [25]). Recently the notion of information
transfer has been put on a rigorous footing by Liang and Kleeman
in the context of dynamical systems (see [43–45], which hereafter
will be cited as LK05, LK07a, LK07b, respectively). The resulting
measure of the transfer is qualitatively consistent with the clas-
sical formalisms but is based on rigorous derivations. Explicit ex-
pressions have been obtained for continuous dynamical systems,
and for two well-studied mappings, namely the baker transforma-
tion and the Hénonmap. These results, most of them unique to the
Liang–Kleeman formalism, agree well with what one may expect
by physical intuition.

The Liang–Kleeman formalism is with respect to Shannon
entropy, or absolute entropy as may appear in the literature. The
predictability of a dynamical system, however, is measured by rel-
ative entropy. Relative entropy is also called Kullback–Leibler di-
vergence; it is ameasure of the difference between two probability
distributions. Kleeman [10] points out that, in order tomeasure the
utility of a forecast, one should ask how much additional informa-
tion is added rather than howmuch information it has. Relative en-
tropy provides a very naturalmeasure of this information addition,
if the reference probability is set as the initial distribution. Kleeman
[10] also argues in favor of relative entropy because of its appealing
properties, such as its invariance on nonlinear transformations and
its non-negativity [46]. In the context of aMarkov chain, it has been
proved that it always decreases monotonically with time, a prop-
erty usually referred to as the generalized second law of thermo-
dynamics (e.g., [46]; also see [47]). The concept of relative entropy
is now a well accepted measure of predictability (e.g., [48,10,49]).

Our problem here is therefore fundamentally how information
is transferred with respect to relative entropy. The purpose of
this study is to develop a formalism for this information transfer.
The development parallels what we have done in LK07b, and the
resulting transfer will be referred to as information transfer with
respect to relative entropy, or simply information transfer when no
confusion arises. In the literature the term ‘‘information flow’’ is
also seen (e.g., [25,50,33]) for the same meaning. We recognize
that it might be more appropriate to use ‘‘transfer’’ for discrete
systems, but it indeed forms a flow when the system components
are associated with locations in physical space. We will hence use
the two in the text without distinction.

In the following we first present a conceptual framework for
this study, then give the concept a formal definition. An explicit
formula is derived for the information transfer of concern; the
detailed derivations are supplied in Sections 3–5. Properties of
the formulation are investigated and discussed (Section 6), and
an application presented (Section 7). This study is summarized in
Section 8.
2. Mathematical framework

Information flow or information transfer is a fundamental con-
cept in general physics and dynamical system which has a wide
variety of applications in natural and social sciences (e.g., [37,25,
51,52,33]). However, for decades there have been available in the
community only empirical or half-empirical formalisms, e.g., the
time-delayed information transfer [41] and the transfer entropy
[40] with respect to a Markov chain. These formalisms, albeit dif-
ferent in form, all deal with the time evolution of entropy, as ob-
served in LK07a. This observation motivates Liang and Kleeman
to build a unified formalism, which later on they find can be put
on a rigorous footing within the framework of a dynamical system
(LK05, LK07a,b). In the following, we will follow the same route to
build the formalism for this study.

Consider an n-dimensional dynamical system:

dx1
dt

= F1(t; x1, x2, . . . , xn), (1)

dx2
dt

= F2(t; x1, x2, . . . , xn), (2)

...
...

dxn
dt

= Fn(t; x1, x2, . . . , xn). (3)

for state variables x = (x1, x2, . . . , xn). We want to understand
how the predictability of one component of x is altered by another,
namely, how information is transferred between two components
with respect to relative entropy. For simplicity, the above equation
set may also appear in the text in a vectorial form,

dx
dt

= F(t; x), (4)

with the flow F = (F1, F2, . . . , Fn). Denote by X = (X1, X2, . . . ,
Xn) ∈ Ω the random variables corresponding to (x1, x2, . . . , xn),
where Ω is the sample space, and let ρ = ρ(t; x1, x2, . . . , xn) be
the joint probability density of X. Assume

Ω = Ω1 × Ω2 × · · · × Ωn, (5)

(Ωi is the sample spaces of Xi, i = 1, 2, . . . , n), and write

Ωjn ≡ Ωj × Ωj+1 × · · · × Ωn, j = 1, 2, . . . , n − 1 (6)

throughout for notational convenience. Further assume that ρ
vanishes at the boundaries of Ω , i.e., the extreme events have a
measure of zero in the probability space. These assumptions have
been justified for real problems in our previous studies (LK05,
LK07b). For many problems of interest, Ω = Rn. In this case, the
assumption of vanishingρ at boundaries automatically holds, since
ρ is compactly supported.

In LK05, LK07a,b, a rigorous formalism of information transfer
between the components is developed with respect to absolute
entropy

H = −


Ω

ρ log ρ dx. (7)

From the Liouville equation (e.g., [53]) associated with (1)–(3) or
(4), a remarkable law was obtained in LK05 that governs the time
evolution of H ,

dH
dt

= E(∇ · F) =

n
i=1

E


∂Fi
∂xi


, (8)

where E stands for the operator of mathematical expectation with
respect to density ρ. (Refer to Section 3 where a proof will be
given.) Eq. (8) reads that, given a dynamical system, the rate of
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change of absolute entropy is simply the expectation of the diver-
gence of the flow with the system, and contributions from differ-
ent components add up to make the change. In LK05, this fact is
used to establish the information transfer formalism. Without loss
of generality, consider only the transfer from X2 to X1; if not, the
variables may always be reordered to make it so. We thence need
the marginal entropy of X1:

H1 = −


Ω1

ρ1 log ρ1 dx1, (9)

where

ρ1 =


Ω2n

ρ dx2dx3 . . . dxn, (10)

is the marginal density. The time rate of change of H1, namely dH1
dt ,

has contributions from two different dynamical sources: one with
the effect from X2 excluded, another one from X2. The latter is pre-
ciselywhatwe are looking for, i.e., the information transfer from X2
to X1 with respect to absolute entropy. The former part needs some
clarification. For a system with components (X1, X2, X3, . . . , Xn),
that ‘‘the effect of X2 is excluded’’ means that the corresponding
deterministic variable x2 stays fixed, entering the system as a pa-
rameter. In the present context, this means a modification of the
system (1)–(3) to
dx1
dt

= F1(t; x1, x2, x3, . . . , xn),

dx3
dt

= F3(t; x1, x2, x3, . . . , xn),

...
...

dxn
dt

= Fn(t; x1, x2, x3, . . . , xn),

where the second equation is excluded, and x2 now appears as a
parameter. Write this part as dH1 /dt , with subscript signify-
ing that the effect of X2 is excluded, then the transfer is dH1/dt −

dH1 /dt . Here dH1/dt can be easily derived from the Liouville
equation; the key is to find dH1 /dt . For a 2D system, i.e., when
n = 2, dH1 /dt is identical to the time rate of change of the abso-
lute entropy of X1 as X1 evolves on its own. Based on the observa-
tion about (8), we then have, for n = 2,

dH1

dt
= E


∂F1
∂x1


. (11)

Eq. (11) was originally obtained in LK05 through an intuitive ar-
gument, and was later on proved in LK07b. Accordingly the infor-
mation transfer with respect to absolute entropy is obtained by
subtracting dH1 /dt from dH1/dt . This formalism is rigorous in na-
ture, and has been validated with benchmark dynamical system
problems like the baker transformation and Hénon map.

We here need to develop another formalism of information
flow, following the same route of development as above, but with
respect to relative entropy

D = D(ρ ∥ q) =


Ω

ρ log
ρ

q
dx = −H −


Ω

ρ log q dx. (12)

In the definition, q is a density at some fixed time. Usually it is the
initial density or density in the equilibrium state; here let it be the
initial density to avoid any confusion that may arise. With respect
to D, we are concerned with the information transfer between
two components. Again without loss of generality, consider only
the transfer from X2 to X1. We hence need the marginal relative
entropy of X1:

D1 =


Ω1

ρ1 log
ρ1

q1
dx1 = −H1 −


Ω1

ρ1 log q1 dx1, (13)
where

q1 =


Ω2n

q dx2dx3 . . . dxn. (14)

Following the above argument, the mechanisms governing the
time evolution of D1 can be classified exclusively into two groups:
one from a modified system with the effect of X2 excluded,
another from the component X2. This latter mechanism is what
we are seeking for, namely, the information transfer from X2

to X1. Correspondingly dD1
dt , the time rate of change of D1,

can be decomposed as the change of D1 with the effect of X2

instantaneously excluded, denoted as
dD1
dt , plus the time rate of

information transfer, T2→1. So

T2→1 =
dD1

dt
−

dD1

dt
. (15)

The units of T2→1 vary, depending on the base of the logarithm in
D1 that is used. The common units are nats per second for base e
and bits per second for base 2.

The above formalism allows a clear interpretation for infor-
mation flow/transfer. In the present context, the transfer from X2
to X1, i.e., T2→1, gives quantitatively the effect of X2 on the pre-
dictability of X1. Particularly, a positive T2→1 means that the evolu-
tion of X2 favors the prediction of X1; in other words, it will make
X1 more predictable. On the other hand, a negative T2→1 implies
that X2 reduces the predictability of X1. (Previously in LK07a and
LK07b when Shannon entropy is considered, a negative transfer
T2→1 means that the evolution of X2 tends to reduce the uncer-
tainty of X1, and vice versa.)

The whole problem is now converted to the derivation of dD1
dt

and
dD1
dt . In the following section dD1

dt is derived. As in LK07b, the
challenge comes from the evaluation of D1 , which we defer to
Section 4. For convenience, the notation in the subscript of D1
will be extended to any to signify that component j (or the effect
of component j) is excluded from a set of n independent variables.
For example,

ρ = ρ (x1, x3, . . . , xn) =


Ω2

ρ(x) dx2, (16)

ρ = ρ (x3, . . . , xn) =


Ω1×Ω2

ρ(x) dx1dx2, (17)

where the time dependency has been suppressed for notation sim-
plicity. This convention will be used throughout the paper without
further clarification.

3. Time rate of change of D1

Theorem 1. For the system described in Section 2,

dH
dt

= E(∇ · F), (18)

dD
dt

= −E(∇ · F) − E(F · ∇ log q) (19)

dH1

dt
=


Ω

log ρ1 ·
∂(F1ρ)

∂x1
dx, (20)

dD1

dt
= −


Ω

log
ρ1

q1
·
∂(F1ρ)

∂x1
dx, (21)

where E is the operator of expectation with respect to the density ρ .

Proof. See Appendix A. �
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Eq. (18) was obtained in LK05; it states that the change of absolute
entropy in a system is totally controlled by the divergence of the
flow, or the contraction/expansion of the phase space. Notice that

Ω

∂(F1ρ)

∂x1
dx = 0 by the assumptions introduced before (vanishing

density at boundaries and Cartesian product form for Ω). So
Eq. (21) can be equivalently written as

dD1

dt
= −


Ω


1 + log

ρ1

q1


·
∂(F1ρ)

∂x1
dx. (22)

Later on we will have opportunity to use (22).

4. Time rate of change of D1 with the effect of X2 excluded

Theorem 2. For the dynamical systemdescribed in Section2, the time
rate of change of the marginal relative entropy of X1 with the effect of
X2 excluded is

dD1

dt
= −


Ω


1 + log

ρ1

q1


∂(F1ρ )

∂x1
Θ2|1 dx

+


Ω

∂

F1ρ1 log

ρ1
q1


∂x1

θ2|1 dx, (23)

where

θ2|1 = θ2|1(x1, x2, x3, . . . , xn) =
ρ

ρ
ρ , (24)

Θ2|1 = Θ2|1(x1, x2) =


Ω3n

θ2|1 dx3 . . . dxn. (25)

This theorem cannot be proved using the Liouville equation corre-
sponding to (4), as the dynamics is changed upon manipulating x2.
In LK07b, the problem is approached by discretizing (1)–(3) or (4),
finding how H1 increases from time t to time t +∆t in the absence
of the influence of X2, and then taking the limit as ∆t → 0. In the
following the same strategy is adopted.

Discretization of the continuous system (4) results in amapping
Φ : Ω −→ Ω, x → y such that

Φ : y = x + ∆t F(t; x), (26)

i.e., an approximation of (4) up to the first order of ∆t . To avoid
confusion, here x(t+∆t) has beenwritten as y = (y1, y2, . . . , yn);
this convention will be kept throughout. In component form, the
mapping is

Φ = (Φ1, Φ2, . . . , Φn) :


y1 = x1 + ∆t · F1(t; x),
y2 = x2 + ∆t · F2(t; x),
...

...
yn = xn + ∆t · Fn(t; x).

(27)

Corresponding to Φ that maps the state from t to t + ∆t , there
is an operator sending the density of the state variables from t to
t + ∆t . This is the Frobenius–Perron operator, or F–P operator for
short. Formally, the F–P operator, written as P , corresponding to
a transformation Φ : Ω → Ω is a map P : L1(Ω) → L1(Ω) such
that, for any ω ⊂ Ω ,

ω

Pρ(x) dx =


Φ−1(ω)

ρ(x) dx.

It can be viewed as the discrete form of the Liouville equation for
density ρ. See [53] for more details. Liang and Kleeman (LK07b)
have shown that the mapping Φ and its associated F–P operator
P possess some interesting properties, which here we briefly
summarize.
(1) As∆t goes to zero,Φ and its individual components are always
invertible, and

Φ−1
:


x1 = y1 − ∆t · F1(t; y) + O(∆t2),
x2 = y2 − ∆t · F2(t; y) + O(∆t2),
...

...

xn = yn − ∆t · Fn(t; y) + O(∆t2).

(28)

(2) The Jacobian of Φ, J , and its inverse, are

J = det


∂(y1, y2, . . . , yn)
∂(x1, x2, . . . , xn)


= 1 + ∆t∇ · F + O(∆t2); (29)

J−1
= 1 − ∆t∇ · F + O(∆t2). (30)

(3) The F–P operator P can be explicitly written out:

Pρ(y1, . . . , yn) = ρ

Φ−1(y1, . . . , yn)

 J−1


= ρ(x1, x2, . . . , xn)
J−1

 , (31)

thanks to the invertibility of Φ (cf. [53]).

Following LK07b, in order to get rid of the effect of X2, we need
to freeze x2 at t . The mapping Φ is accordingly modified, with the
second equation removed from the set, and a new transformation
results:

Φ :


y1 = x1 + ∆t · F1(t; x),
y3 = x3 + ∆t · F3(t; x),
...

...
yn = xn + ∆t · Fn(t; x).

(32)

Φ maps (x1, x3, x4, . . . , xn) to (y1, y3, y4, . . . , yn) with x2 as a
parameter. Corresponding to Φ there is an F–P operator. Write
it as P 2̂. Here we use the subscript 2̂ to signify that component
x2 is frozen; we do not use because in the resulting probability
density, x2 is not excluded, but retained as a parameter. (Think
about the probability conditioned on X2.) We thence have P 2̂ρ,
the joint density at time t + ∆t with x2 frozen as a parameter at
time t , and

(P 2̂ρ)1(y1) =


Ω3n

P 2̂ρ(y1, y3, . . . , yn) dy3 . . . dyn

being the corresponding marginal density of Y1 = X1(t + ∆t).
(Again note (P 2̂ρ)1 has dependence on x2.) From LK07a and
LK07b, the marginal absolute entropy for X1 evolved from H1 with
contribution from X2 excluded since time t is

H1 (t + ∆t) =


Ω

(P 2̂ρ)1(y1) log(P 2̂ρ)1(y1)

·ρ(x2|x1, x3, . . . , xn)
·ρ3...n(x3, . . . , xn) dy1dx2 . . . dxn,

where y1 = x1 + ∆t F1(x), ρ3...n = ρ , ρ(x2|x1, x3, . . . , xn)
being the conditional density of X2 on (X1, X3, . . . , Xn). By the same
argument, we have

D1 (t + ∆t) =


Ω

(P 2̂ρ)1(y1) log
(P 2̂ρ)1(y1)

q1(y1)
· ρ(x2|x1, x3, . . . , xn)
·ρ3...n(x3, . . . , xn) dy1dx2 . . . dxn. (33)

To evaluate D1 (t + ∆t), the key is the evaluation of the F–P
operator associated with the modified mapping Φ :

Proposition 3.

(P 2̂ρ)1(y1) = ρ1(y1) − ∆t ·


Ω3n

∂F1ρ
∂y1

dx3 . . . dxn

+O(∆t2). (34)
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Proof. See Appendix B. With this proposition, we are ready to
prove the Theorem of this section. �

Outline of the proof of Theorem 2
Substitute (34) into (33), and express the x1 in ρ(x2|x1, x3, . . . ,

xn) as a function of y1 (from the inverse map Φ−1). Then compute
D1 (t+∆t)−D1(t)

∆t . Eq. (23) follows as ∆t → 0. Refer to Appendix C
for the lengthy detailed derivation.

5. Information transfer with respect to relative entropy

Theorem 4. For the system described in Section 2, the information
transfer with respect to relative entropy from X2 to X1 is

T2→1 = −


Ω


1 + log

ρ1

q1


·


∂F1ρ
∂x1

−
∂F1ρ
∂x1

Θ2|1


dx

−


Ω

∂

∂x1


F1ρ1 log

ρ1

q1


· θ2|1 dx, (35)

where

θ2|1 = θ2|1(x1, x2, x3, . . . , xn) =
ρ

ρ
ρ ,

Θ2|1 = Θ2|1(x1, x2) =


Ω3n

θ2|1 dx3 . . . dxn,

and Θ2|1 may be viewed as a generalized conditional density of X2 on
X1.

Proof. Subtract (23) from (22) and the result follows. �

Note the transfer rate of relative entropy is in a form similar to that
for absolute entropy. One changes log ρ1 in the Eq. (51) of LK07b
into log ρ1

q1
and multiplies the whole formula by (−1), and obtains

Eq. (35). Recalling the definition of relative entropy (12), this is just
what one may expect.

Above is the transfer from X2 to X1. Following the same proce-
dure, it is easy to arrive at the transfer from Xj to Xi, for any i, j =

1, 2, . . . , n, i ≠ j. One may replace the index 2 by j, and 1 by i in
(35), and make the corresponding modification for θ2|1 and Θ2|1 to
obtain the formula. But the easiest way is to rearrange the order of
(1)–(3) such that j is in the second slot and i in the first. This way
the rate of transfer is expressed in the same form as (35).

6. Properties

The information transfer formulated in (35) possesses some
nice properties. The first is about causality or transfer asymmetry.
In physics, the transfer of energy (or other physical properties such
as mass) between two entities is usually anti-symmetric. That is to
say, if entity A transfers an amount of energy, say, ∆E, to entity B,
then by the law of energy conservation it is equivalent to saying
that B transfers −∆E to A. (This simple fact has been used to for-
mulate a new localized hydrodynamic instability analysis [54].) In
particular, when no energy transfer occurs in a direction, the trans-
fer in the opposite direction also vanishes. Information transfer or
information flow, however, behaves quite differently. The transfers
T2→1 and T1→2 from (35) betweenX1 andX2 are usually not related;
in other words, the transfer is asymmetric or directional. This is a
fundamental property for information transfer; its importance lies
in its implication of causality, as elaborated in the literature [40].
The following theorem is a concretization of it.

Theorem 5 (Causality). For the system introduced in Section 2, if F1
is independent of x2, then T2→1 = 0. In the meantime, T1→2 does not
need to be zero, unless F2 is independent of x1.
Proof. If F1 is independent of x2, in (35) the ρ, Θ2|1, and θ2|1 can be
integrated separately with respect to x2. Observe that

ρdx2 = ρ ,
θ2|1dx2 =


ρ

ρ
ρ dx2 = ρ ,

Θ2|1dx2 =

 
θ2|1dx3 . . . dxn


dx2

=


ρ dx3 . . . dxn = 1.

So integrating (35) once with respect to x2 gives

T2→1 = −

 
1 + log

ρ1

q1


·


∂F1ρ
∂x1

−
∂F1ρ
∂x1


dx1dx3 . . . dxn

−


∂

∂x1


F1ρ1 log

ρ1

q1


· ρ dx1dx3 . . . dxn

= −


∂

∂x1


F1ρ1 log

ρ1

q1
ρ


dx1dx3 . . . dxn

= 0. � (36)

Another property relates Theorem 2 to (11), the 2D results of LK05:

Theorem 6. When n = 2,
dD1
dt = −E


∂F1
∂x1


− E


F1

∂ log q1
∂x1


.

Proof. By definition, when n = 2,

Θ2|1 = θ2|1 = ρ(x2|x1) =
ρ

ρ1
,

and

ρ = ρ1.

So
dD1

dt
= −


Ω


1 + log

ρ1

q1


∂F1ρ
∂x1

Θ2|1 dx

+


Ω

∂

F1ρ1 log

ρ1
q1


∂x1

θ2|1 dx

= −


Ω


1 + log

ρ1

q1


∂F1ρ1

∂x1

ρ

ρ1
dx

+


Ω

∂

F1ρ1 log

ρ1
q1


∂x1

ρ

ρ1
dx

=


Ω


−ρ

F1
q1

∂q1
∂x1

− ρ
∂F1
∂x1


dx

= −E


∂F1
∂x1


− E


F1

∂ log q1
∂x1


. �

In this theorem, the remarkable LK05 result (11) is recovered in the
first term on the right hand side; the second term arises from the
reference entropy q. The existence of the second term makes the
present formalism generally different from that of LK05. But, sur-
prisingly, the 2D information transfers obtained from these differ-
ent formalisms are precisely the same, save for a minus sign which
is due to the different definitions ofD andH . Indeed, corresponding
to Eq. (10) of LK05, we have
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Fig. 1. Numerical scheme to solve the joint density ρ. Instead of obtaining ρ(t+∆t) directly from ρ(t) by solving the Liouville equation, a detour is made through ensemble
prediction of the TBS system.
Corollary 7. When n = 2, (35) becomes

T2→1 = E2|1


∂(F1ρ1)

∂x1


, (37)

where E2|1 stands for the expectation with respect to conditional
density ρ2|1 = ρ/ρ1.

Proof. As shown above, when n = 2, ρ = ρ1, θ2|1 = Θ2|1 =

ρ/ρ1 = ρ2|1. Substituting these back to (35), and using the fact
that ρ is compactly supported, we have

T2→1 = −


Ω


1 + log

ρ1

q1


·


∂F1ρ
∂x1

−
∂F1ρ1

∂x1

ρ

ρ1


dx

−


Ω

∂

F1ρ1 log

ρ1
q1


∂x1

·
ρ

ρ1
dx

= −


Ω

∂(F1ρ1)

∂x1
dx +


Ω

∂(F1ρ1)

∂x1
·

ρ

ρ1
dx

+


Ω


− log

ρ1

q1
·
∂F1ρ
∂x1

+ log
ρ1

q1
·
∂F1ρ1

∂x1

ρ

ρ1

−

∂

F1ρ1 log

ρ1
q1


∂x1

ρ

ρ1


dx

=


Ω

∂(F1ρ1)

∂x1

ρ

ρ1
dx −


Ω

∂

F1ρ log ρ1

q1


∂x1

dx

=


Ω

∂(F1ρ1)

∂x1
ρ2|1 dx = E2|1


∂(F1ρ1)

∂x1


. �

7. Application with the truncated Burgers–Hopf system

As an example of application, we re-consider the truncated
Burgers–Hopf system (TBS) examined in LK07b, a system first in-
troduced in [55,56] to explore a stochastic scheme of parameteri-
zation of the unresolved processes in numerical weather forecasts.
It is obtained through a Galerkin truncation of the inviscid Burgers
equation. If only two modes are retained, we have the following
four-dimensional autonomous system (see LK07b):

dx1
dt

= F1(x1, x2, x3, x4) = x1x4 − x3x2 (38)

dx2
dt

= F2(x1, x2, x3, x4) = −x1x3 − x2x4, (39)

dx3
dt

= F3(x1, x2) = 2x1x2, (40)

dx4
dt

= F4(x1, x2) = −x21 + x22, (41)

where (x1, x2) are the cosine and sine components of the first
mode, and (x3, x4) the components of the second mode, respec-
tively. The TBS is intrinsically chaotic with a low-dimensional at-
tractor [55–57]. For this particular case, there are two linearly
independent first integrals, namely energy and Hamiltonian, and
with them the system becomes integrable through a canonical
transformation of coordinates; see Appendix D for details. We now
study the information transferswith respect to relative entropy be-
tween the four components, and compare the results to those in
LK07b.

The key to the computation of the information transfer (35) is
the estimation of the joint density of (X1, X2, X3, X4) as a function
of time. This may be obtained through solving

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+

∂(F3ρ)

∂x3
+

∂(F4ρ)

∂x4
= 0, (42)

the Liouville equation corresponding to Eqs. (38)–(41). A more
efficient way is, instead of solving ρ directly, estimating the
density with the ensembles generated at each time step from
ensemble prediction of (38)–(41), as schematized in Fig. 1. The
ensemble is formed with the trajectories randomly distributed in
the beginning, through solving (38)–(41) using the second order
Runge–Kutta method with a time step size ∆t = 0.01. A typical
computed trajectory is plotted in Figs. 2 and 3; it shows an invari-
ant manifold or strange attractor limited within some finite do-
main. If we write Ωd = [−d, d] × [−d, d] × [−d, d] × [−d, d], the
strange attractor lies withinΩ25. So a finite domainmay be chosen
for the computation, although ρ is defined on R4. We choose it to
be Ω30, a domain slightly larger than Ω25. This domain is then uni-
formly partitioned into 30 × 30 × 30 × 30 bins, with a spacing of
2 in each dimension. A huge ensemble of initial conditions of size
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Fig. 3. As Fig. 2, but for projections on 2D planes.
404
= 2.56×106 is first generated, through drawing randomly ac-

cording to a preset distribution ρ0(x). We adopt an ensemble size
of 404 instead of 304 to ensuremore than one drawper bin on aver-
age. Suppose x is initially distributed as a GaussianN(µ, 6), with a
mean µ = (µi) and a covariance matrix 6 = (σij), i, j = 1, 2, 3, 4,
and suppose σii = σ 2

i , and σij = 0 if i ≠ j. The parameters µi

and σ 2
i (i = 1, 2, 3, 4) are open for experiments. With these ini-

tial conditions, Eqs. (38)–(41) are integrated forward. At every time
step we obtain an ensemble of X, and therefrom a joint density ρ
through bin-counting.

The transfers Tj→i, i, j = 1, 2, 3, 4, i ≠ j, now can be computed
straightforwardly by evaluating (35). As in LK07b, there are 12
series to compute. Notice that in (40) and (41), the evolutions of
x3 and x4 do not depend on x3 and x4, so T3→4 = T4→3 = 0
by Theorem 5. The computed results agree with this inference.
The other transfers have only numerical solutions, and may vary
with the initial distribution. We have conducted experiments for
different σ 2

i and µi in generating the initial ensemble. It is found
that the variances σ 2

i do not affect much the final results, so in
these experiments we keep σ 2

i = 9 fixed, only allowing µ to vary.
Fig. 4 displays the results for the experiment with µ = (9, 9, 9, 9).
They correspond to those shown in the Fig. 3 of LK07b. Like the
latter, most of the transfers are essentially zero. One of the nonzero
transfers is T3→2. See Fig. 4; also see Fig. 5 for a close-up. It is
negative through the time, with a time average of −3.8. This is
consistent with the T3→2 in LK07b, which is positive (refer to the
definition of relative entropy (12) for a relation between D and
H). The difference is that here it is not a constant, but oscillates
throughout; another difference is that it is far smaller inmagnitude
than its counterpart in LK07b.

The largest difference between the result here and that in LK07b
is that there are two nonzero transfers here, and the dominant one
is T2→4, as shown in Fig. 4. In fact, T3→2 is almost negligible in
comparisonwith T2→4, which averages to 20 and is nearly constant
through the time. So it is T2→4 that makes the counterpart of the
T3→2 in LK07b. Note that T2→4 and T3→2 stand for information flow
in the opposite direction between the two modes—components
(x1, x2) stand for the lower frequency mode in the truncation,
while (x3, x4) for the highermode (refer to LK07b for the derivation
of (38)–(41)). In the present study, the computed result shows that
information flows primarily from the lower mode to the higher
mode, though weak information flow in the opposite direction has
also been identified (T3→2).
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Fig. 5. A close-up of T3→2 in Fig. 4.
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Fig. 6. Same as Fig. 4, but with µ = (9, 9, −9, −9). Transfers other than T2→4 and T3→2 are not significantly different from zero.
The above result is very robust. Experiments with different µ
on [−9, 9] × [−9, 9] × [−9, 9] × [−9, 9] have been conducted,
all yielding a T2→4 large in magnitude, except that µ = 0 which
makes all the transfers vanish. T2→4 may be positive or negative,
indicating that X2 may increase or decrease the predictability of
X4. Plotted in Fig. 6 is the result of an experiment with µ =

(9, 9, −9, −9). The computed T2→4 is approximately−20. In some
of the experiments, discernible small T3→2 as that in Fig. 5 may
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Fig. 7. Same as Fig. 4, but with σ2 = 4. Transfers other than T2→4 and T3→2 are not significantly different from zero.
also be identified; in others it is not significantly different from
zero. For example, in both Figs. 4(b) and 6 they are not zero (±4 on
average), though very small in comparison to T2→4; By observation
it is found that when µ1 = µ2 < 0, T3→2 vanishes, leaving T2→4
the only transfer. An interesting observation is that, if T3→2 is not
zero, it always appears with a sign opposite to T2→4. Figs. 4 and 6
give two such examples. That is to say, if the lower frequencymode
increases the predictability of the higher frequencymode, then the
latter decreases the predictability of the former; and vice versa.
This result is very interesting and has important implications for
realistic problems, though the TBS is just a highly idealized model.
We will give some discussion in the following section.

Experiments have also been conductedwith varying initial vari-
ances, σ 2

i . Again, all of them result in a distinctly large T2→4. Shown
in Fig. 7 is the result of an experiment, withµ same as that in Fig. 4,
but (σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 ) = (9, 4, 9, 9). Since σ 2

2 = 4 is significantly
smaller than others, initially we have a better knowledge of X2, or
have more information for X2. It is thus expected that more infor-
mation may be transferred from X2 to X4. In other words, T2→4 is
expected to be much larger than that in Fig. 4. The time evolution
of T2→4 displayed in Fig. 7 confirms this expectation.

8. Discussion and conclusions

Information transfer (or information flow asmay be referred to)
with respect to relative entropy was formulated to study how pre-
dictability varies locally as a dynamical system evolves. The result-
ing transfermeasure (35) is in a form similar to thatwith respect to
absolute entropy in previous studies [45], but for two terms mod-
ified in the formula. In the present context, a transfer from a com-
ponent (say, X2) to another component (say, X1), written T2→1, tells
the predictability change of X1 due to X2. When T2→1 < 0, it means
that the evolution of X2 makes X1 less predictable; on the other
hand, a positive T2→1 implies that X2 increases the predictability of
X1. The information transfer thus formulatedhas somenice proper-
ties. First of all, it satisfies the observed asymmetry requirement:
the transfers between two components are asymmetric or direc-
tional. In particular, given a component, if its evolution is inde-
pendent of another, then there is no information flowing from the
latter, while in the same time the transfer in the opposite direc-
tion need not be zero. In other words, between two components,
information transfer in one direction carries no implication of that
in the other direction, in contrast to the transfer of other physical
properties such as energy [54].

It should be pointed out that what the formalism yields is the
direct information transfer/flow between two components. In a
high-dimensional system, one can imagine that two components
could be related, and hence indirect information transfers could
take place, via a third party or more parties. As schematized in
Fig. 8, T2→1 = 0, i.e., no transfer exists from x2 to x1. However, if
T3→1 and T2→3 are not zero, information does flow indirectly from
x2 to x1 through x3, adopting a route

x2 −→ x3 −→ x1.
Fig. 8. The route of information transferring from x2 to x1 in the system (43)–(45).
The transfer is through x3; no direct transfer takes place.

A simple system that may mimic the schematic is

dx1
dt

= F1(x1, x3), (43)

dx2
dt

= F2(x1, x2, x3), (44)

dx3
dt

= x2. (45)

We see that F1 is independent of x2, so by the theorem of causal-
ity, the transfer from x2 to x1 is zero: T2→1 = 0. If F1 and F2 are
such that T2→3 and T3→1 do not vanish, we get what Fig. 8 dis-
plays. For this particular system, one may argue that, with (45),
x3 can be expressed in terms of x2 which, after substituted into
(43) and (44), implies a direct transfer to x1. This is not the case,
as by substitution, the system is changed, with dimensionality re-
duced from three to two, so are the components. This is equivalent
to saying that, in the schematic, the three-node system has been
changed into a different, two-node system, and hence the infor-
mation transfer must also be changed; the new x2 essentially takes
the composite effect of the original x2 and x3. The resulting infor-
mation transfer is hence from both x2 and x3 in the original sys-
tem and is, therefore, nonzero. From this example one can see, by
computing the information transfer/flow as formulated, it is easy
to identify the direct and indirect componentwise relations, plus
the route throughwhich the indirect relations are formed. Thiswill
be useful in the practical fields such as dependency identification
among the nodes of a complex network.

The formalismwas applied to the study of the information flow
between the first two modes of a truncated Burgers system (TBS).
The TBS is conservative, with energy and Hamiltonian being the
first integrals (see Appendix D); it also conserves absolute entropy,
as dH

dt = E(∇ · F) = 0 with the F in (38)–(41) substituted. But its
information in terms of relative entropy is not. In fact, substituting
in (19) for the initial distribution q adopted in the experiments, one
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Fig. 9. (a) Evolution of predictability with different choices of initial distributions. The lower thick line is the relative entropy with the parameters the same as for Fig. 4;
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entropies with σ 2

1 = 4 (solid), σ 2
3 = 4 (dashed), and σ 2

4 = 4 (dot–dashed), respectively. (Other parameters are the same as for Fig. 4.)
obtains

dD
dt

=

4
i=1

E

xi − µi

σ 2
i

Fi


. (46)

With the Fi as defined in (38)–(41), it is easy to see that


i xiFi = 0.
So when σ 2

i are all the same, say σ 2,

dD
dt

=

4
i=1

µi

σ 2
E(Fi).

The terms on the right hand side are the second moments of the
state variables; they generally do not sum to zero, unless µi = 0.
Therefore generally TBS does not conserve D or relative entropy.

Corresponding to the above fact are the computational results
for the 12 transfers. Unless µi = 0 in the case when σ 2

i are iden-
tical, they do not add up to zero. But among them all are essen-
tially zero, save for a strong transfer between the sine components
from the low-frequencymode to the high-frequencymode (T2→4),
plus aweak transfer from the high-frequency cosine component to
the low-frequency sine component (T3→2). The latter is very small
in comparison to the former, and may vanish in some cases. But,
interestingly, if it does not vanish, it always carries a sign oppo-
site to that of the former. In other words, if knowledge of the low-
frequency mode increases the predictability of the high-frequency
mode, the feedback, if any, is always to reduce the predictability of
the low-frequency mode, and vice versa. As a whole, the informa-
tion flow from the low-frequency mode is dominantly important;
the flow in the opposite direction is generally negligible.

The asymmetry with the inter-modal information flow implies
that, for this idealized TBS, the predictability of the high-frequency
mode could be controlled by the low-frequencymode; specifically,
the predictability of X4 could be controlled by that of X2. In other
words, more precise knowledge of X2 is expected to benefit the de-
termination of X4 in the future. Indeed this seems to be the case at
the early stage of the marginal relative entropy evolution, i.e., the
evolution of D4 in our available experiments with different σ 2

2 (not
shown). (But after a certain period, say after t = 1, the system loses
memory about the initial condition because of its chaotic behav-
ior.) Of course, here it is too early to reach a conclusion, as by time
t = 2 many trajectories have not yet entered the computational
domain for the sample space, making the computed ρ4 hence D4
for the early stage not reliable. There is still much work to be done
along this line;wewill defer this to later studieswithmore realistic
systems.

The outstanding asymmetric transfer T2→4 may also help to
improve the prediction of the system by adopting a better strategy
of observing platform design. Specifically, it implies that precise
observation of X2 could be more important than that of other
components of the system.We have rerun the experiment in Fig. 4,
but with variance reduced to 4 for components 1, 2, 3, and 4,
respectively. Accordingly the joint relative entropy D is computed
and plotted. Note here D can be computed to substantial accuracy
at all time instants with (46), where only moments of the random
variables are involved: we just need to evaluate those moments
by taking ensemble means, instead of coarse-graining the sample
space. The computed Ds are plotted in Fig. 9. In Fig. 9(a), the two
thick lines that form the lower and upper bounds are the D for the
standard experiment (all σ 2

i are 9), and the D for that with σ 2
2 = 4.

Clearly the predictability is significantly improved by reducing σ 2
2

from 9 to 4. All other experiments result in evolution lines lying
in between. For clarity, they are not displayed here, but displayed
in a close-up plot (Fig. 9(b)) with thin lines. Obviously, for a better
forecast of the system, precise observation of X2 is more important
than precise observation of other components. If, during the
forecast, observational data are taken in, the result implies that X2
should be identified as the primary variable for data assimilation.

The above causal relation between processes on different fre-
quencies or scales is very important in that it has implications
for one of the major problems in turbulence research and atmo-
sphere–ocean science, i.e., the parameterization of unresolved or
subgrid processes in numerical models. In a turbulent flow, there
is a continuous spectrum of processes of all scales, but even with
the most powerful computers to date it is impossible to resolve all
the scales. The system is therefore not closed. The unresolved pro-
cesses must be represented, or parameterized, with the resolved
dynamics to fulfill the closure. The above result with the TBS im-
plies that this kind of parameterization seems to work, as the pre-
dictability of the small-scale (high-frequency) mode is controlled
by the large-scale (low-frequency) mode. Of course, one cannot
draw conclusions from such a highly idealized system, although
originally the TBSwas introduced as a prototype of the atmosphere
for the study of dynamical closure [55,56].

The importance of the inter-scale information transfer is not
only out of the above practical concern; it is also an important
physical problem in nature. For example, the North Atlantic Oscil-
lation (NAO), the dominant mode controlling the wintertime cli-
mate of the North America and Europe, is believed to be driven
by the synoptic eddies with a time scale of several days to weeks.
How the NAO interacts with the eddies in the stormy boreal win-
ters is a continuing challenging problem in atmospheric research
because it is highly nonlinear in nature. Compounding the problem
is that the interaction is essentially two way. That is to say, while
the eddy-driven origin is an issue, the NAO also causes the growth
and decay of the eddies. This work is expected to be useful in the
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investigation of these problems, particularly in the investigation of
the causal relation in a quantitative way.

Another important problem concerns how uncertainty, and
hence predictability, propagates in physical space. This is a prob-
lem naturally arising in fields such as material science, nan-
otechnology, and atmosphere–ocean science where ensemble
prediction is used. This question actually may be posed for any
problems governed by a partial differential equation (PDE). To il-
lustrate how it may be approached, consider a Burgers equation.
A dynamical system of large dimensionality can be formed by dis-
cretizing the space. The differencing may be fulfilled using a three
point scheme. The resulting ODEs are thence connected to each
other through the grid. Each ODE is tagged with the location in
physical space, as well as a component in the system. The informa-
tion transfer between the components then forms a flow of infor-
mation in the space. Specifically, an ODE is connected to two other
ODEs in the immediate neighborhood; it does not depend on other
components. So for each point in the space, there are two trans-
fers from ahead and back. By drawing these transfers, one obtains
a flow forward and a flow backward, revealing how predictability
changes due to uncertainty propagation. Theoretically this can be
done, but practically it is hampered by the formidable computa-
tional job in evaluating the joint density in (35). For example, con-
sider a five-dimensional joint density. Allowing 10 draws for each
dimension, this totals 105 ensemblemembers. While ensembles of
this sizemight be feasible for the Burgers equation, in dealing with
realistic problems usually one can only handle ensembles of size
in the order of hundreds or even tens. To overcome this difficulty,
we need to simplify the rigorously derived formula (35), usually
through problem-specific approximation. We leave this to future
studies.

We remark that, when looking at the fractal measure of a
strange attractor, one should use the measure-theoretic entropy
namely the Kolmogorov–Sinai entropy (K–S entropy henceforth)
[58,59], rather than the entropy in the usual sense, as the latter
diverges. (That is the reason why in the TBS example only finite
time evolution, not asymptotic behavior, is examined.) In this case,
we need to establish a formalism of information transfer with
respect to K–S entropy. Theoretically this should be feasible, as the
systemmodified using the present strategy, i.e., after a component
is frozen instantaneously as a parameter, is still a dynamical system
in the usual sense, and hence its K–S entropy exists. The difficulty
comes from the technical aspect, considering, for example, the
supremum taken over all the partitions of the phase space. Besides,
the K–S entropy is not really an entropy, but an entropy rate
(entropy per unit time). The resulting transfer measure, if existing,
might be quite different from what we have obtained, either with
respect to Shannon entropy or with respect to relative entropy.
How the present study may be generalized to have K–S entropy
included is still a challenging research issue.

It should also be pointed out that, inmany real problems such as
theNAOmentioned above, the dynamics is not given explicitly, but
in the form of observed data. In order for the formalism to apply,
we first need to estimate from the series of observations (usually
time series) the dynamical equations, then apply the result such as
(35) to the estimated system. In a forthcoming paper, this will be
treatedwithin amore generic setting, with stochasticity taken into
account. (The theoretical part is seen in [51].) The resulting transfer
measure will be completely data based. That is to say, in that case
one will be able to compute the transfer measure directly from the
observations; no a priori knowledge of the dynamics is needed.
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Appendix A. Proof of Theorem 1

Eq. (18) was originally obtained in LK05. It can be proved with
the aid of the Liouville equation

∂ρ

∂t
+ ∇ · (Fρ) = 0 (A.1)

corresponding to the dynamical system (4) (cf. [53]).Multiplication
of (A.1) by −(1 + log ρ) gives

−
∂ρ log ρ

∂t
= F · ∇(ρ log ρ) + ρ(1 + log ρ)∇ · F

= [log ρ∇ · (Fρ) + F · ∇ρ] + ρ∇ · F
= ∇ · (ρ log ρF) + ρ∇ · F.

Integrate overΩ = Ω1×Ω2×· · ·×Ωn and notice the assumption
of vanishing ρ at the boundaries. This results in

dH
dt

=


Ω

ρ∇ · F dx = E(∇ · F).

Eq. (19) is about the evolution of relative entropy D. By the
definition (12) and using the Liouville equation, we have

dD
dt

= −
dH
dt

−


Ω

∂ρ

∂t
log q dx

= −E(∇ · F) +


Ω

(∇ · ρF) log q dx

= −E(∇ · F) −


Ω

ρF · ∇ log q dx

= −E(∇ · F) − E (F · ∇ log q) ,

where integration by parts has been used.
To prove (20), first integrate (A.1) with respect to (x2, x3, . . . ,

xn) over Ω2n to get the evolution equation for ρ1:

∂ρ1

∂t
+


Ω2n

∂(F1ρ)

∂x1
dx2 . . . dxn = 0. (A.2)

Multiplying −(1 + log ρ1) and following the same procedure as
above, one easily obtains (20).

By definition the marginal relative entropy of X1 is

D1 = −H1 −


Ω1

ρ1 log q1 dx1,

where q1 is independent of time. Take derivatives on both sides
with respect to t to get

dD1

dt
= −

dH1

dt
−


Ω1

∂ρ1

∂t
log q1 dx1.

Substitute (A.2) for ∂ρ1
∂t and (21) follows. �

Appendix B. Proof of Proposition 3

This is a result obtained in LK07b; we rewrite the proof here for
completeness.
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We know from Section 4 that Φ and its components are
invertible. Φ is hence also invertible, and its inverse is

Φ−1
:


x1 = y1 − ∆t · F1(y1, x2, y3, . . . , yn) + O(∆t2),
x3 = y3 − ∆t · F3(y1, x2, y3, . . . , yn) + O(∆t2),
...

...

xn = yn − ∆t · Fn(y1, x2, y3, . . . , yn) + O(∆t2),

(B.1)

and

J−1
= det


∂(x1, x3, . . . , xn)
∂(y1, y3, . . . , yn)


= 1 − ∆t


i≠2

∂Fi
∂xi

+ O(∆t2). (B.2)

By (31),

P 2̂ρ(y1, y3, . . . , yn) = ρ

Φ−1(y1, y3, . . . , yn)

 J−1
 . (B.3)

So

(P 2̂ρ)1(y1) =


Ω3n

ρ (y1 − ∆t F1, y3 − ∆t F3, . . . , yn − ∆t Fn)

×

J−1
 dy3 . . . dyn + O(∆t2)

=


Ω3n

ρ (y − ∆t F )

J−1
 dy3 . . . dyn + O(∆t2), (B.4)

where F = (F1, F3, . . . , Fn) are understood as functions of (y1, x2,
y3, . . . , yn). Make a change of variables, xi = yi − ∆t · Fi(y1, x2,
y3, . . . , yn), for i = 3, 4, . . . , n. The Jacobian associated with this
transformation is

J3n = det


∂(y3, y4, . . . , yn)
∂(x3, x4, . . . , xn)


= 1 + ∆t

n
i=3

∂Fi
∂xi

+ O(∆t2), (B.5)

which givesJ−1
 · |J3n| = 1 − ∆t

∂F1
∂x1

+ O(∆t2). (B.6)

With these substituted (B.4) becomes

(P 2̂ρ)1(y1) =


Ω3n

ρ (y1 − ∆t F1(y1, x2, x3, . . . , xn))

·

J−1
 · |J3n| dx3 . . . dxn

=


Ω3n

ρ (y1 − ∆t F1(y1, x2, x3, . . . , xn))

·


1 − ∆t

∂F1
∂x1


dx3 . . . dxn + O(∆t2)

=


ρ (y1, x3, . . . , xn) − ∆t

∂ρ

∂y1
F1


×


1 − ∆t

∂F1
∂x1


dx3 . . . dxn + O(∆t2)

= ρ1(y1) − ∆t ·


Ω3n


∂F1
∂x1

ρ (y1, x3, . . . , xn)

+ F1
∂ρ (y1, x3, . . . , xn)

∂y1


dx3 . . . dxn

+O(∆t2). (B.7)
Since x1 and y1 are interchangeable up to an order of ∆t , the two
terms in the bracket can be combined, with the residual going to
the higher order terms. That is to say,

(P 2̂ρ)1(y1) = ρ1(y1) − ∆t ·


Ω3n

∂F1ρ
∂y1

dx3 . . . dxn

+O(∆t2). �

Appendix C. Proof of Theorem 2

Subtract D1(t) from (33) to get

∆D1 = D1 (t + ∆t) − D1(t)

= −∆H1 −


Ω

(P 2̂ρ)1(y1) log q1(y1) · ρ(x2|x1, x3, . . . , xn)

·ρ3...n(x3, . . . , xn) dy1dx2 . . . dxn

+


Ω

ρ1(x1) log q1(x1) dx1

≡ −∆H1 − D∗ +


Ω

ρ1 log q1 dx1. (C.1)

In this equation, ∆H1 has already been obtained in LK07b. We
need to compute D∗. Note x1 and y1 coexist in the expression, the
latter being x1 + F1∆t . Perform a Taylor series expansion around
(y1, x2, x3, . . . , xn) to get rid of x1:

ρ(x2|x1, x3, . . . , xn) =
ρ

ρ
(x1, x2, . . . , xn)

=
ρ

ρ
+

∂
ρ

ρ

∂y1
· (−F1∆t) + O(∆t2)

= ρ(x2|y1, x3, . . . , xn) +
ρ

ρ 2

∂ρ

∂y1
F1∆t

−
1

ρ

∂ρ

∂y1
F1∆t + O(∆t2)

= ρ(x2|y1, x3, . . . , xn)

+ ρ(x2|y1, x3, . . . , xn) ·
∂ log ρ

∂y1
F1∆t

−
1

ρ

∂ρ

∂y1
F1∆t + O(∆t2), (C.2)

where the variables without independent variables explicitly writ-
ten out are tacitly supposed to be functions of (y1, x2, x3, . . . , xn).
With this expansion and (34) from Proposition 3,

D∗ =


Ω

log q1(y1) ·


ρ1(y1) − ∆t


Ω3n

∂F1ρ
∂y1

dx3 . . . dxn



·


ρ(x2|y1, x3, . . . , xn) + ρ(x2|y1, x3, . . . , xn)

·
∂ log ρ

∂y1
F1∆t −

1
ρ

∂ρ

∂y1
F1∆t


· ρ3...n(x3, . . . , xn)dy1dx2 . . . dxn + O(∆t2)

=


Ω

log q1(y1) · ρ1(y1)

· ρ(x2|y1, x3, . . . , xn) dy1dx2 . . . dxn

+ ∆t


Ω

log q1(y1) · ρ1(y1)

·


ρ(x2|y1, x3, . . . , xn)

∂ log ρ

∂y1
F1 −

1
ρ

∂ρ

∂y1
F1


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· ρ3...n(x3, . . . , xn) dy1dx2 . . . dxn

− ∆t


Ω

log q1(y1) ·


Ω3n

∂F1ρ
∂y1

dx3 . . . dxn


· ρ(x2|y1, x3, . . . , xn)
· ρ3...n(x3, . . . , xn) dy1dx2 . . . dxn + O(∆t2)

≡ (I) + (II) + (III) + O(∆t2).

Now evaluate the three terms one by one. For convenience, all the
y1 are replaced by x1. This is legitimate as now y1 is a dummy
variable. The first term is

(I) =


Ω

log q1 · ρ1 ·
ρ

ρ
· ρ dx

=


Ω1

ρ1(x1) log q1(x1) dx1. (C.3)

At the second step, we first integrate ρ(x)
ρ

with respect to x2 (all
other parts are independent of x2) to get 1, then take the integral
with respect to x3, . . . , xn and eliminate ρ .

For the second part,

(II) = ∆t


Ω

log q1(x1) · ρ1(x1)

×


ρ

ρ

∂ log ρ

∂x1
F1 −

1
ρ

∂ρ

∂x1
F1


ρ dx

= −∆t


Ω

ρ1 log q1 ·
ρ

ρ
·
∂ρ/ρ

∂x1
· F1 ·

ρρ

ρ
dx

= −∆t


Ω

F1ρ1 log q1 ·
∂

∂x1


ρ ρ

ρ


dx. (C.4)

Using the notations (24) and (25):

θ2|1 =
ρ ρ

ρ
,

Θ2|1 =


Ω3n

θ2|1(x) dx3 . . . dxn

simplifies the above formula to be

(II) = −∆t


Ω

F1ρ1 log q1 ·
∂θ2|1

∂x1
dx

= ∆t


Ω

∂(F1ρ1 log q1)
∂x1

· θ2|1 dx. (C.5)

The third term (III) may be equally simplified,

(III) = −∆t


Ω


log q1(x1) ·


Ω3n

∂F1ρ
∂x1

dx3 . . . dxn


· θ2|1(x) dx.

The part in the square brackets is independent of (x3, . . . , xn). So
integration can be performed on θ2|1 with respect to (x3, . . . , xn),
which gives

(III) = −∆t


Ω1×Ω2

log q1(x1) ·


Ω3n

∂F1ρ
∂x1

dx3 . . . dxn


· Θ2|1(x1, x2) dx1dx2

= −∆t


Ω

log q1 ·
∂F1ρ
∂x1

· Θ2|1 dx. (C.6)

Combining (I), (II), and (III), one has

D∗ =


Ω1

ρ1 log q1 dx1 + ∆t


Ω

∂(F1ρ1 log q1)
∂x1

θ2|1 dx

− ∆t


Ω

log q1
∂F1ρ
∂x1

Θ2|1 dx + O(∆t2).
So

∆D1 = −∆H1 − D∗ +


Ω

ρ1 log q1 dx1

= −∆H1 − ∆t


Ω

∂F1ρ1 log q1
∂x1

θ2|1 dx

+ ∆t


Ω

log q1
∂F1ρ1

∂x1
Θ2|1 dx + O(∆t2).

Letting ∆t → 0, it becomes
dD1

dt
= −

dH1

dt
−


Ω

∂F1ρ1 log q1
∂x1

θ2|1 dx

+


Ω

log q1
∂F1ρ1

∂x1
Θ2|1 dx. (C.7)

By Eq. (48) of LK07b,
dH1

dt
=


Ω

(1 + log ρ1)
∂F1ρ
∂x1

Θ2|1 dx

+


Ω

F1ρ1 log ρ1
∂ρ/ρ

∂x1
ρ dx

=


Ω

(1 + log ρ1)
∂F1ρ
∂x1

Θ2|1 dx

+


Ω

F1ρ1 log ρ1
∂θ2|1

∂x1
dx

=


Ω

(1 + log ρ1)
∂F1ρ
∂x1

Θ2|1 dx

−


Ω

∂(F1ρ1 log ρ1)

∂x1
θ2|1 dx. (C.8)

In arriving at the last step, integration by parts has been performed
together with the assumption of vanishing boundary density.
Substituting (C.8) back to (C.7), one finally arrives at (23). �

Appendix D. Solution of (38)–(41)

It has been shown in [57] that the truncated Burgers system
conserves momentum, energy, and Hamiltonian. The momentum
conservation just gives the evolution equations themselves; the re-
maining two invariants, i.e., energy and Hamiltonian, can be uti-
lized to have the 4D system integrated out. Hereafter we show
how. But beforemoving on, a transformation is needed for the state
variables:
(q1, p1) = (x1, x2) (D.1)

(q2, p2) =


1

√
2
x3,

1
√
2
x4


. (D.2)

In terms of (qi, pi), i = 1, 2, the original system (38)–(41) can be
written in a canonical form:
dqi
dt

=
∂H

∂pi
, (D.3)

dpi
dt

= −
∂H

∂qi
, (i = 1, 2) (D.4)

with qi and pi the configuration and momentum coordinates, re-
spectively. In the equations, the Hamiltonian is

H =
1

√
2
q2(q21 − p21) +

√
2q1p1p2. (D.5)

By algebraic manipulation one sees that dH/dt = 0; that is to say,
H is a first integral. Another first integral is energy

E =

4
i=1

x2i = q21 + p21 + 2

q22 + p22


. (D.6)
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Indeed, it is easy to check that dE/dt = 0. Moreover, H and E are
in involution, i.e., the Poisson bracket of H and E vanishes:

[H, E] =
∂H

∂q1

∂E

∂p1
−

∂H

∂p1

∂E

∂q1
+

∂H

∂q2

∂E

∂p2
−

∂H

∂p2

∂E

∂q2

=

√
2q2q1 +

√
2p1p2


· (2p1)

−


−

√
2q2p1 +

√
2q1p2


· (2q1)

+
1

√
2


q21 − p21


· (4p2) − 4

√
2q1p1q2

= 0. (D.7)

This propertymakes it possible tomake a canonical transformation
(e.g., [4,60]):

q̄i = q̄i(q1, q2; p1, p2) (D.8)

Īi = Īi(q1, q2; p1, p2) (D.9)

with the new momentum coordinates being the invariants I1 = E
and I2 = H . Let the generating function [4] of the second type be

G(q1, q2; I1, I2) =

 (q1,q2)

(q01,q
0
1)

2
i=1

pi(q1, q2; I1, I2) dqi, (D.10)

where pi are inverted from (D.5) and (D.6) such that they are ex-
pressed in terms of (q1, q2, I1, I2), then

pi =
∂G
∂qi

, (D.11)

q̄i =
∂G
∂ Ii

, (D.12)

H̄ = H +
∂G
∂t

= H, (D.13)

and, in the new coordinates,

dIi
dt

= −
∂H̄

∂ q̄i
= −

∂H

∂ q̄i
, (D.14)

dq̄i
dt

=
∂H̄

∂ Ii
=

∂H

∂ Ii
. (D.15)

In (D.14), (I1, I2) = (E, H) are constants, so ∂H/∂ q̄i = 0; in other
words,H is independent of q̄i, or is a function of Ii only. Let ∂H/∂ Ii
≡ πi (it is easy to know that π2 = 1). Eq. (D.15) then can be inte-
grated out, and accordingly the new configuration coordinates are
obtained:

q̄i = πit + ci, i = 1, 2 (D.16)

where ci are the integral constants that can determined by the ini-
tial conditions. Note q̄i = q̄i(q1, q2; I1, I2) are known from (D.12),
so (D.16) are two equalities about the variables (q1, q2; I1, I2) given
a fixed time t . They together with the first integrals I1 = E
[Eq. (D.6)] and I2 = H [Eq. (D.5)] constitute the four constraints
that determine a trajectory in the 4D phase space (q1, q2, p1, p2)
(and hence the space (x1, x2, x3, x4)). An explicit expression for the
phase portrait is very complicated and not helpful in this case. The
reader is referred to Fig. 2 for such a trajectory.
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