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ABSTRACT

The past years have seen the success of a novel and rigorous localized multiscale energetics formalism in a

variety of ocean and engineering fluid applications. In a self-contained way, this study introduces it to the at-

mospheric dynamical diagnostics, with important theoretical updates and clarifications of some common mis-

conceptions about multiscale energy. Multiscale equations are derived using a new analysis apparatus—namely,

multiscale window transform—with respect to both the primitive equation and quasigeostrophic models. A re-

construction of the ‘‘atomic’’ energy fluxes on the multiple scale windows allows for a natural and unique sepa-

ration of the in-scale transports and cross-scale transfers from the intertwined nonlinear processes. The resulting

energy transfers bear a Lie bracket form, reminiscent of the Poisson bracket inHamiltonianmechanics; hence, we

would call them ‘‘canonical.’’ A canonical transfer process is a mere redistribution of energy among scale win-

dows, without generating or destroying energy as a whole. By classification, amultiscale energetic cycle comprises

available potential energy (APE) transport, kinetic energy (KE) transport, pressure work, buoyancy conversion,

work done by external forcing and friction, and the cross-scale canonical transfers of APE and KE, which cor-

respond respectively to the baroclinic and barotropic instabilities in geophysical fluid dynamics. A buoyancy

conversion takes place in an individual window only, bridging the two types of energy, namely, KE and APE; it

does not involve any processes among different scale windows and is hence basically not related to instabilities.

This formalism is exemplified with a preliminary application to the study of the Madden–Julian oscillation.

1. Introduction

Ever since Lorenz (1955) introduced the concept of

available potential energy (APE), and set up a two-scale

formalism of energy equations using the Reynolds de-

composition, energetic analysis has become a powerful

tool for diagnosing atmospheric and oceanic processes.

Related studies include mean flow–wave interaction

(e.g., Dickinson 1969; Boyd 1976; McWilliams and

Restrepo 1999; Fels and Lindzen 1974; Matsuno 1971),

upward propagation of planetary-scale disturbances

(Charney andDrazin 1961), ocean circulation energetics

(Holland 1978; Haidvogel et al. 1992), mean current–

eddy interaction (Hoskins et al. 1983), atmospheric

blocking (Trenberth 1986; Fournier 2002; Luo et al.

2014), Gulf Stream dynamics (Dewar and Bane 1989),

normal modal interaction (Sheng and Hayashi 1990),

regional cyclogenesis (Cai and Mak 1990), convection

and cabbeling (Su et al. 2016), and the most recent

studies such as Cai et al. (2007), Waterman and Jayne

(2011), Murakami (2011), Hsu et al. (2011), Chen et al.

(2014), and Chapman et al. (2015), to name a few.

Meanwhile, Saltzman (1957) cast the problem into the

framework of Fourier analysis and obtained the ener-

getics in the wavenumber domain, while Kao (1968)

further extended it to the wavenumber–frequency

space. Now both approaches have become standard in

geophysical fluid dynamics and other fluid-related fields;

see, for example, Pedlosky (1987), Chorin (1994), and

Pope (2004).

Lorenz’s energetics in bulk form (i.e., in the form of

global mean or integral) have clear physical in-

terpretations (e.g., Pedlosky 1987). This global-mean

form, however, may be inappropriate for regional di-

agnostics, as real atmospheric processes are localized in

nature; in other words, they tend to be locally defined in
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space and time and can be on the move. The Madden–

Julian oscillation (MJO) that we will take a brief look at

the end of this study is such an example; it is a pro-

gressive process that involves energy production and

dissipation. For this reason, it has been a continuing

effort to relax the spatial averaging/integration to have

these processes faithfully represented. A tradition star-

ted by Lorenz himself is to collect the terms in di-

vergence form and combine them as one term

representing the transport process, separate the term

from the nonlinear interaction, and take the residue as

the energy transfer between the distinct scales (e.g.,

Harrison and Robinson 1978). Now this has been a

standard approach to multiscale energetic diagnostics

for fluid research, particularly for turbulence research,

where much effort has been devoted to engineering the

so-obtained transfers (cf. Pope 2004).

While we know a transport process indeed bears a

divergence form in the governing equations, the above

transport–transfer separation is not unique. Multiple

divergence forms exist that may yield quite different

transfers. As argued by Holopainen (1978), the resulting

energy transfer in such an open system is quite ambig-

uous. This issue, which is actually quite profound in fluid

dynamics, has long been discovered but has not received

enough attention, except for a few studies such as Plumb

(1983). [The discussion by Berloff (2005) on the con-

sistency of eddy fluxes also seems to be related to this

problem.]

Another major issue in formulating multiscale ener-

getics regards the machinery for process decomposi-

tion by scale. Traditionally, two methods—namely,

Reynolds’ mean eddy decomposition (MED) and Fourier

transform—have been used. The former is originally a

statistical notion with respect to an ensemble mean, but

for practical reasons the ensemble mean is usually re-

placed by time mean, zonal mean, etc., making it a tool

of scale decomposition. Both of these methods are

global, in the sense that they do not retain the local in-

formation. This is generally inappropriate for realistic

atmospheric processes such as instabilities, which are in

nature highly localized energy burst processes. In

remedy, a practical approach that is commonly used is to

do a running time mean over a chosen period of time.

Indeed, this gives the local information while retaining

the simplicity of the Reynolds formalism. However, it

does not solve the fundamental problem that an energy

burst process, among others, is by no means stationary

over any duration; any scale decomposition under such a

hidden assumption may result in spurious information,

preventing one from making correct diagnoses.

An alternative approach to overcoming the difficulty

is via filtering. Filters have been widely used to separate

processes involving different scales. But for energetics

studies, it seems that a very fundamental issue has been

completely ignored—that is, how energy (and any qua-

dratic properties) should be expressed in this frame-

work. Currently the common practice is, for a two-scale

decomposition, to first apply some filter to separate a

field variable, say, u, into two parts, say, uL and uS, which

represent the large-scale and small-scale features, re-

spectively, and then take u2
L and u2

S (up to some factor)

as the large-scale and small-scale energies. While this

intuitively based and widely used technique may be of

some use in real problem diagnostics, it is not physically

relevant—one immediately sees the inadequacy by no-

ticing that u2 6¼ u2
L 1 u2

S. In fact, multiscale energy is a

concept in phase space, such as that in Fourier power

spectra; it is related to physical energy through a theo-

rem called the Parseval relation. Attempting to evaluate

multiscale energies with the filtered (low pass, bandpass,

etc.) or reconstructed field variables is conceptually off

track. Actually this is a difficult problem and has not

been well formulated until filter banks and wavelets are

connected (Strang and Nguyen 1997). Besides, energy

conservation requires that the resulting subspaces from

filtering must be orthogonal, as we will elaborate in the

following section. This requirement, unfortunately, has

been mostly ignored in previous studies along this line.

The other line in this regard is with respect to Fourier

transform [Saltzman (1957) and its sequels], which does

not have local information retained, either. Coming to

remedy is wavelet transform or, to be precise, ortho-

normal wavelet transform (OWT), as only with an or-

thogonal basis can the notion of energy in the physical

sense be introduced. OWT was first introduced by

Fournier (2002) into the study of atmospheric energet-

ics. This is a formalism with respect to space. While

opening a door to localized spectral structures, many

processes such as transports are not as easy to see as

those in the Lorenz-type formalisms. On the other hand,

the atmospheric and oceanic processes tend to occur

on a range of scales (e.g., MJO has a scale range of 30–

60 days), or ‘‘scale windows’’ as we will introduce in the

following section, rather than on individual scales. For

OWT, transform coefficients (hence, multiscale ener-

gies) are defined discretely at different locations for

different scale levels; there is no way to add them

through a range of scales to make an expression of

localized energy for that range. These issues, among

others, are yet to be addressed with these formalisms.

So, to relax the spatial averaging in a bulk energetics

formalism incurs the issue of transport–transfer sepa-

ration, while improving MED to have local information

retained requires more sophisticated machinery of scale

decomposition. Can we put these two issues in the same
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framework and solve them in a unified approach? The

answer is yes. The early attempts include the multiscale

oceanic energetics studies by Liang andRobinson (2005,

hereafter LR05), based on multiscale window transform

(MWT), a functional analysis tool that was rigorized

later (Liang and Anderson 2007, hereafter LA07). This

formalism has been mostly overlooked, though it has

been applied with success to a variety of real ocean

problems (e.g., Liang and Robinson 2004, 2009) and

engineering problems (e.g., Liang and Wang 2004),

partly because it has not been introduced for atmo-

spheric studies and has not been formulated in spherical

coordinates. (As we will see soon, expressing the ener-

getics in spherical coordinates is by no means an easy

task.) This study is purported to address these issues,

giving a comprehensive and self-contained introduction

of the fundamentals and the progress since LR05. A key

point that distinguishes this study from the earlier effort

is that, in LR05, the transport–transfer separation was

introduced in a half-empirical way. With the nice

properties of the MWT, which was formally established

later on in LA07, we will see soon in the next section that

this actually can be put on a rigorous footing, and the

resulting transfer bears a Lie bracket form, reminding us

of the Poisson bracket in Hamiltonian mechanics. Be-

sides, in this study we will extend the formalism to

quasigeostrophic flows, which must be derived in a dif-

ferent way. Considering the traditional and recently

renewed interests (e.g., Murakami 2011) in multiscale

atmospheric energetics diagnostics, and considering

that a topic of much concern in turbulence research is

to engineer the resulting transfer, this rigorous study is

rather timely.

In the following we first give a brief introduction of the

concepts of scale window, multiscale window transform,

andmultiscale energy. In section 3, we show how the flux

on a specific scale window can be rigorously derived and

how the energy transfer between two-scale windows can

be obtained. We will see that the resulting transfer

bears a form like the Lie bracket, reminding one of the

Poisson bracket in Hamiltonian dynamics. We then

derive the evolution equations for the multiscale kinetic

energy (KE) and APE with both a primitive atmo-

spheric model (section 4) and a quasigeostrophic model

(section 6). For completeness, a summary of the multi-

scale oceanic energetics, together with the needed

modification, is briefly presented (section 5); also in-

cluded is a brief review of some necessary horizontal

treatment (section 7). In section 8, we demonstrate how

the formalism may be applied, using theMadden–Julian

oscillation as an example. This study is summarized in

section 9. For easy reference, in appendix A, a glossary

of symbols is provided. The related software can be

downloaded from the website http://www.ncoads.org/

(within the section ‘‘software’’).

2. Multiscale window transform

This section gives a very brief introduction to the

multiscale window transform developed by LA07. The

first part (section 2a) is the fundamentals, but the reader

may simply skip ahead if he/she already knows the no-

tation and the fact that a reconstruction is conceptually

different from a transform.

a. Scale window and multiscale window transform

More often than not, an atmospheric process tends to

occur on a range of scales, such as the MJO, which has a

broadband spectrum between 30 and 60 days (cf. section

8), rather than on individual scales. Such a scale range is

called, in a loose sense, a scale window. Rigorously it can

be defined over a univariate interval or a multidimen-

sional domain. In this study, the former is used, as we

only deal with time. This is in accordance with Lorenz’s

formalism. Historically it has long been discussed (e.g.,

Haynes 1988) and has been justified by the observational

fact that, in the atmosphere, scales in time and in space

are correlated. Besides, only scales defined over a uni-

variate field can be unambiguously referred to as large

scale, small scale, and so forth, as desired in the atmo-

spheric energetics studies.

Without loss of generality, let the interval over which

the signals to be diagnosed span be [0, 1]; if not, it may

always be made so after a transformation. Consider a

Hilbert space V‘,j � L2[0, 1]
1 generated by the basis

ffj
n(t)gn50;1,...,2 j‘21, where

f j
n(t)5 �

1‘

q52‘
2j/2f[2j(t1 ‘q)2 n1 1/2],

n5 0, 1, . . . , 2j‘21 . (1)

Here f(t) is a scaling function constructed in LA07

such that ff(t2 n1 1/2)gn is orthonormal (Fig. 1).

From f(t), one can also construct an orthonormal

wavelet basis. The parameter ‘5 1 or ‘5 2, corre-

sponding respectively to the periodic and symmetric

extension schemes. Shown in Fig. 2 is the basis for ‘5 2

and a selection of j—namely, the ‘‘scale level’’ (22j is

the scale). For notational simplicity, throughout this

study the dependence of f j
n on ‘ is suppressed (but

retained in other notations).

1 Loosely speaking, it is a space of square integrable functions on

[0, 1].
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It has been justified inLA07 that there always exists a j2
such that all the atmospheric/oceanic signals of concern

lie in V‘,j2 . Furthermore, it has been shown in there that

V
‘,j0

� V
‘,j1

� V
‘,j2
, for j

0
, j

1
, j

2
.

A decomposition thus can be made such that

V
‘,j2

5V
‘,j1
4W

‘,j12j2
5V

‘,j0
4W

‘,j02j1
4W

‘,j12j2
, (2)

where W‘,j12j2 is the orthogonal complement of V‘,j1 in

V‘,j2 , andW‘,j02j1 that ofV‘,j0 inV‘,j1 . It has been shown by

LA07 that V‘,j0 contains functions of scales larger than

22j0 only, while lying in W‘,j02j1 and W‘,j12j2 are the

functions with scale ranges from 22j0 to 22j1 and from

22j1 to 22j2 , respectively. We call the so-formed sub-

spaces ofV‘,j2 as scale windows. For easy reference, from

larger scales (lower scale levels) to smaller scales (higher

scale levels), they will be referred to as scale windows 0,

1, and 2, respectively. Depending on the problem of

concern, they may also be assigned names in association

to physical processes. For example, one may refer to

them as large-scale, midscale, and small-scale windows,

or, in the context of, say, MJO studies, mean window,

intraseasonal window or MJO window, and synoptic

window, or, in the context of oceanography, large-scale

window, mesoscale window, and submesoscale window.

More scale windows can be likewise defined, but in this

study, usually three are enough (in fact, in many cases

only two are needed).

Consider a function u(t) 2 V‘,j2 . With (1), a transform

û j
n 5

ð‘
0

u(t)f j
n(t) dt (3)

can be defined for a scale level j. Given window bounds

j0 , j1 , j2, u then can be reconstructed on the three

scale windows as constructed above:

u;0(t)5 �
2j0 ‘21

n50

û
j0
n f

j0
n (t) , (4)

u;1(t)5 �
2j1 ‘21

n50

û
j1
nf

j1
n (t)2 u;0(t), and (5)

u;2(t)5 u(t)2u;0(t)2u;1(t) , (6)

with the notations ;0, ;1, and ;2 signifying, respec-

tively, the corresponding three scale windows. Since

V‘,j0 , W‘,j02j1 , and W‘,j12j2 are all subspaces of V‘,j2 , the

functions u;0, u;1, and u;2 can be transformed with

respect to ff j2
n (t)gn, the basis of V‘,j2 ,

û;-
n 5

ð‘
0

u;-(t)f
j2
n (t) dt , (7)

for windows -5 0, 1, 2, and n5 0, 1, . . . , 2j2‘ 2 1. Note

here the transform coefficients û;-
n contain only the pro-

cesses belonging to scale window -. It has, though dis-

cretely, the finest resolution permissible in the sampling

space on [0, 1].We call (7) amultiscalewindow transform.

With this, (4)–(6) can be written in a unified way:

u;-(t)5 �
2j2 ‘21

n50

û;-
n fj2

n (t), -5 0, 1, 2. (8)

Equations (7) and (8) form the transform–

reconstruction pair for MWT.

b. Multiscale energy

MWT has a Parseval relation–like property; in the

periodical extension case (‘5 1),

�
n

û;-
n ŷ;-

n 5 u;-(t)y;-(t) , (9)

for u, y 2 V1,j2 , and because of the mutual orthogonality

between the scale windows,

�
-
�
n

û;-
n ŷ;-

n 5 u(t)y(t) , (10)

where the overline indicates averaging over time, and�n

is a summation over the sampling set f0, 1, 2, . . . , 2j2 2 1g
(see LA07 for a proof). In the case of other extensions,�n

is replaced by ‘‘marginalization,’’ a naming convention

after Huang et al. (1999), which also bears the physical

meaning of summation over n. Equation (10) states that, a

product of two MWT coefficients followed by a margin-

alization is equal to the product of their corresponding

reconstructions averaged over the duration. This property

is usually referred to as property of marginalization.

The property of marginalization is important in that it

allows for an efficient representation of multiscale en-

ergy in terms of the MWT transform coefficients. In

(10), let u5 y, the right-hand side is then the energy of u

FIG. 1. The orthonormal scaling function f constructed in LA07.
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(up to some constant factor) averaged over [0, 1]. It is

equal to a summation of 3N5 33 2j2 (if three scale

windows are considered) individual objects (û;-
n )2 cen-

tered at time tn 5 22j2n1 1/2, with a characteristic in-

fluence interval Dt5 tn11 2 tn 5 22j2 . The multiscale

energy at time tn then should be the mean over the in-

terval: (û;-
n )2/Dt5 2j2 (û;-

n )2. Notice the constant mul-

tiplier 2j2 ; it is needed for the obtained multiscale energy

to make sense in physics. But for notational succinct-

ness, it will be omitted in the following derivations.

Therefore, the energy of u on scale window- at step n is

E-
n } (û;-

n )2 . (11)

Note the --window-filtered signal is u;-; by common

practice, one would take (u;-)2 as the energy on -.
From above, one sees that this is conceptually

incorrect.

3. Multiscale flux and canonical transfer

a. Multiscale flux

For a scalar field T, its ‘‘energy’’ (quadratic

property) on window - at step n is (T̂;-
n )2/2 (up to

some factor). In the MWT framework, energy can be

decomposed as a sum of a bunch of atomlike

elements:

1

2
T2 5 �

n1,-1

�
n2,-2

1

2
[T̂

;-1
n1

fj2
n1
(t)][T̂

;-2
n2

fj2
n2
(t)]. (12)

Look at the flux of the ‘‘atom’’ by a flow v(t) over

t 2 [0, 1] at step n within window -. It isð1
0

v(t) � 1
2
[T̂

;-1
n1

fj2
n1
(t)][T̂

;-2
n2

fj2
n2
(t)]d(n2n

2
)d(-2-

2
)dt .

(13)

FIG. 2. Three-dimensional plot of fj
n as function of t (physical space variable; here time) and n (sampling space variable) for a selection of scale

level j (corresponding to scale 22j on a [0, 1] domain). The symmetric extension scheme is used in constructing f j
n via the f in Fig. 1.
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In the above delta functions, the arguments may equally

be chosen as n1 and -1. The flux of T
2/2 by the flow v on

- at step n is then the sum of the atomic expressions

over all the possible n1, n2, -1, and -2; that is,

Q-
n 5 �

n1,-1

�
n2,-2

ð1
0

1

2
v � [T̂;-1

n1
fj2

n1
(t)][T̂

;-2
n2

fj2
n2
(t)]d(n2 n

2
)d(-2-

2
) dt

5
1

2

ð1
0

v(t)T(t) � T̂;-
n fj2

n (t) dt . (14)

But the function T̂;-
n fj2

n (t) lies in window -, and all

windows are orthogonal, so this is something like a

projection of vT onto window -:

Q-
n 5

1

2

ð1
0

d(vT);-

n � T̂;-
n fj2

n (t) dt

5
1

2
T̂;-

n
d(vT);-

n . (15)

The above equation can be used for the derivation

of multiscale potential energetics. For kinetic energy

K5 (1/2)v � v, essentially one can derive in the same

way. To avoid confusion, we consider the energylike

quantity of an arbitrary vector G,

K5
1

2
G �G5 �

n1,-1

�
n2,-2

1

2
[Ĝ

;-1
n1

f j2
n1
(t)] � [Ĝ;-2

n2
f j2
n2
(t)].

(16)

So the flux of the atom over t 2 [0, 1] at step n on win-

dow - isð1
0

v(t)
1

2
[Ĝ

;-1
n1

f j2
n1
(t)] � [Ĝ;-2

n2
f j2

n2
(t)]d(n2n

2
)d(-2-

2
)dt ,

(17)

and the flux of K by v on - at n is

Q-
n 5 �

n1,-1

�
n2,-2

1

2
v(t)[Ĝ

;-1
n1

f j2
n1
(t)]

� [Ĝ;-2
n2

f j2
n2
(t)]d(n2 n

2
)d(-2-

2
) dt

5
1

2

ð1
0

[v(t)G(t)] � Ĝ;-
n fj2

n (t) dt , (18)

where the dyadic vG takes right dot product with Ĝ;-
n .

Again, Ĝ;-
n f j2

n (t) lies in window -. Because of the or-

thogonality among windows,

Q-
n 5

1

2

ð1
0

[v(t)G(t)];- � Ĝ;-
n f j2

n (t) dt

5
1

2
d(vG)

;-

n � Ĝ;-
n

5
1

2
[ d(vG

1
)
;-

n
d(G

1
)
;-

n 1 d(vG
2
)
;-

n
d(G

2
)
;-

n ], (19)

which is like the superposition of the fluxes of two scalar

fields—namely, G1 and G2.

b. Canonical transfer

Consider a scalar propertyT in an incompressible flow

field v. The equation governing the evolution of T is

›T

›t
1= � (vT)5 other terms.

As only the nonlinear term—namely, the advection—

will lead to interscale transfer, all other terms (e.g.,

diffusion, source/sink) are unexpressed and put to the

right-hand side. To find its evolution on window -, take
MWT on both sides. The first term is d(›T/›t)

;-

n . It has

been shown by LR05 to be approximately equal to

dT̂;-
n /dn, where d/dn is the difference operator with re-

spect to n. Since t of the physical space is now carried

over to n of the sampling space, the difference operator

is essentially the time rate of change when applying to a

discrete time series. We therefore would write it as

›T̂;-
n /›t to avoid introducing extra notations, which are

already too many. But the careful reader should bear in

mind that here it means the difference in the sampling

space rather than the differential in the physical space.

(Since the signals are sampled at each time step, in real

applications they are precisely the same.) The MWTed

equation is, therefore,

›T̂;-
n

›t
1= � d(vT);-

n 5 . . . .

Multiplication of T̂;-
n gives

›E-
n

›t
52T̂;-

n = � d(vT);-

n 1 . . . , (20)

where E-
n 5 (T̂;-

n )2/2 is the energy on window - at

step n.

One continuing effort in multiscale energetics study is

to separate 2T̂;-
n = � d(vT);-

n into a transport process

term = �Q-
n and a transfer process term G-

n . Symboli-

cally, this is
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2= �Q-
n 1G-

n .

An intuitively and empirically based common practice is

to collect divergence terms to form the transport term

(e.g., Harrison and Robinson 1978; Pope 2004). How-

ever, as long pointed by people such as Holopainen

(1978) and Plumb (1983), among others, there exist

other forms that may result in different separations.

In this study, the separation is natural. The multiscale

flux Q-
n , hence the multiscale transport, has been rigor-

ously obtained in the preceding subsection [i.e., (15)].

The transfer G is obtained by subtracting 2= �Q-
n from

the right-hand side of (20):

G-
n 52T̂;-

n = � d(vT);-

n 1= �
�
1

2
T̂;-

n
d(vT);-

n

�
5

1

2
[d(vT);-

n � =T̂;-
n 2 T̂;-

n = � d(vT);-

n ] . (21)

Notice that the resulting transfer bears a form similar

to the Lie bracket and, particularly, the Poisson bracket

in Hamiltonian mechanics. To see this, recall that a Pois-

son bracket f� , �g is defined, for differential operators

(›/›x, ›/›y) and functions F and G, such that

fF,Gg5 ›F

›y

›G

›x
2

›F

›x

›G

›y
.

If fF, Gg5 0, then F andG are said to be in involution

or to Poisson commute. Consider the 1D version of G-
n ;

that is,

1

2

" d(uT);-

n

›T̂;-
n

›x
2 T̂;-

n

›d(uT);-

n

›x

#
.

If we pick two differential operators (›/›x, I), where I is

the identity, then the above canonical transfer is simply

fd(uT);-

n , T̂;-
n g/2. Because of this, we will refer it to as

canonical transfer in the future, in order to distinguish it

from other transfers already existing in the literature.

Canonical transfers possess a very important prop-

erty, as stated in the following theorem:

Theorem 3.1: A canonical transfer vanishes upon

summation over all the scale windows and margin-

alization over the sampling space; that is,

�
n
�
-
G-
n 5 0. (22)

Remark: This theorem states that a canonical trans-

fer process only redistributes energy among scale

windows, without generating or destroying energy

as a whole. This is precisely that one would expect

for an energy transfer process. This property, though

natural, generally does not hold for the existing

empirical formalisms.

Proof: By the property of marginalization [(9)], (21)

gives

�
n

G-
n 5

1

2

ð1
0

[(vT);- � =T;- 2T;-= � (vT);-]dt .

Because of the orthogonality between different

scale windows, this followed by a summation over

- results in

1

2

ð1
0

[(vT) � =T2T= � (vT)] dt5 0.

In the above derivation, the incompressibility as-

sumption of the flow has been used.

The canonical transfer [(21)] may be further simplified

in expression when T̂;-
n is nonzero:

G-
n 52E-

n= �
"d(vT);-

n

T̂;-
n

#
, if T̂;-

n 6¼ 0, (23)

where E-
n 5 (T̂;-

n )2/2 is the energy on window - at step

n and is, hence, always positive. Note that (23) defines

a field variable which has the dimension of velocity

in physical space:

v-T 5
d(Tv);-

n

T̂;-
n

. (24)

It may be loosely understood as a weighted average of v,

with the weights derived from the MWT of the scalar

fieldT. For convenience, we will refer to v-T asT-coupled

velocity. The growth rate of energy on window - is now

totally determined by 2= � v-T , the convergence of v-T ,

and

G-
n 52E-

n= � v-T . (25)

Note G-
n makes sense even when T̂;-

n 5 0 and hence v-T
does not exist. In this case, (25) should be understood

as (21).

The canonical transfer has been validated in many

applications. Particularly, it verifies the barotropic in-

stability structure of the Kuo jet stream model, which

fails the classical empirical formalism. To facilitate the

comparison, Liang and Robinson (2007) established

that, when j0 5 0 and a periodical extension is used, the

canonical transform [(21)] is reduced to

1

2
[T= � v0T 0 2 v0T 0 � =T]
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(the overbar indicates a time mean over the whole du-

ration), which is also in a Lie bracket form. This is quite

different from the traditional transfer2v0T 0 � =T, which,
when T is a component of velocity, is usually understood

as the energy extracted by the Reynolds stress against

the basic profile T. As demonstrated in Liang and

Robinson (2007), this ‘‘Reynolds extraction’’ does not

verify the analytical solution of the Kuo instability

model, while our canonical transfer does.

4. Multiscale atmospheric energetics

We now apply the above theory to derive the multi-

scale atmospheric energetics. For notational brevity,

from now on the dependence on n will be suppressed in

the MWT terms, unless otherwise indicated.

a. Primitive equations

Consider an ideal gas and assume hydrostaticity to

hold. We adopt an isobaric coordinate system, which is

advantageous over others in that air may be viewed as

incompressible, and, besides, as we will see, the resulting

energy equations are free of density. The governing

equations are (e.g., Salby 1996)

›v
h

›t
1v

h
�=

h
v
h
1v

›v
h

›p
1 fk3v

h
52=

h
F*1F

m,p
1F

m,h
,

(26)

›F

›p

*
52a*, (27)

=
h
� v

h
1
›v

›p
5 0, (28)

›T*

›t
1 v

h
� =

h
T*1v

›T*

›p
2

a*v

c
p

5
_q
net

c
p

, and (29)

pa*5RT*, (30)

where _qnet stands for the heating rate from all diabatic

sources, v5dp/dt, the variables with asterisks mean the

whole fields (do not include velocity), and the corre-

sponding variables without stars are reserved for their

anomalies. The subscript h indicates the component on

the p plane; for example, v5 (vh, v), =5 (=h, ›/›p), and

so forth. The other symbols are conventional (see

appendix A).

Let T denote the temperature averaged over the p

plane and time and T denote the departure of T* from

T . Then

T*5T(p)1T(l,u,p; t). (31)

The ideal gas law [(30)], or a*5 (R/p)T*, implies a

linear relation between T and a, and hence, equally, we

have

a*5a(p)1a(l,u, p; t). (32)

By hydrostaticity,

F*5F(p
s
)2

ðp
ps

a*dp5F(p
s
)

2

ðp
ps

adp2

ðp
ps

adp[F(p)1F . (33)

The heat equation in (29) may then be rewritten in

terms of T:

›T

›t
1 v

h
� =

h
T1v

›T

›p
1v

›T

›p
2v

a*

c
p

5
_q
net

c
p

.

But

1

a*

›T

›p
52

1

g

›p

›z

›T

›p
52

1

g

›T

›z
5

1

g
L ,

where L52›T/›z is the lapse rate. Also let

L
d
[

g

c
p

’ 9:83 1023 Km21

(i.e., lapse rate for dry air). The above equation hence

becomes

›T

›t
1 v

h
� =

h
T1v

›T

›p
1va*

L2L
d

g
5

_q
net

c
p

. (34)

Note that

a*
L2L

d

g
5a*

 
2
›T

›z
2

1

c
p

!
5

RT

c
p
p
2

›T

›p
52

T

u

›u

›p
[ S

p

is the stability parameter (u is the potential

temperature).

From above, we also have

=
h
F*5=

h
F , (35)

and by the hydrostatic assumption,

›F

›p
5

›F*
›p

2
›F

›p
52a*1a52a . (36)

Hence the primitive equations are, in terms of T,F, etc.,
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›v
h

›t
1 v

h
� =

h
v
h
1v

›v
h

›p
1 fk3 v

h
52=

h
F1F

m,p
1F

m,h
,

(37)

›F

›p
52a , (38)

=
h
� v

h
1

›v

›p
5 0, (39)

›T

›t
1 v

h
� =

h
T1v

›T

›p
1va

L2L
d

g

1va
L2L

d

g
5

_q
net

c
p

, and (40)

a5
R

p
T . (41)

In the heat equation va[(L2Ld)/g] makes a correction

term and is by comparison small (since a � a).

b. Multiscale kinetic energy equations

The first step is to find Q-
K,n, the flux on scale window

- at step n. This has been fulfilled in the preceding

section, which we rewrite here for reference,

Q-
K 5

1

2
d(vv

h
)
;- � v̂;-

h . (42)

Componentwise this is

Q-
K,l 5

1

2
[d(uu);-

û;- 1 d(uy);-
ŷ;-] , (43)

Q-
K,u 5

1

2
[d(yu);-

û;- 1d(yy);-
ŷ;-], and (44)

Q-
K,p 5

1

2
[d(vu);-

û;- 1 d(vy);-
ŷ;-] . (45)

From the horizontal momentum equations, the canoni-

cal transfer is

G-
K 52( dv � =v

h
)
;-

� v̂;-
h 1= �Q-

K .

It is better expressed, with the aid of the incompressi-

bility equation [(39)], as

G-
K 52[= � d(vv

h
)
;-

] � v̂;-
h 1= �Q-

K,

52[= � d(vv
h
)
;-

] � v̂;-
h 1

1

2
= � [ d(vv

h
)
;-

� v̂;-
h ] (46)

5
1

2
f d(vv

h
)
;-

:=v̂;-
h 2 [= � d(vv

h
)
;-

] � v̂;-
h g , (47)

where the colon operator is defined such that, for two

dyadic products AB and CD,

(AB): (CD)5 (A � C)(B �D) .

In fact, the above can be expanded in terms of the

components of vh 5 (u, y); that is,

G-
K 5

1

2
fd(vu);-

=û;- 2 [= � d(vu);-
]û;-g

1
1

2
fd(vy);-

=ŷ;- 2 [= � d(vy);-
]ŷ;-g . (48)

Notice that this is just the sum of two canonical transfers

and is, hence, canonical.

The equation governing the evolution of K- 5
(1/2)v̂;-

h � v̂;-
h is, therefore fafter v̂;-

h � [MWT of (37)]g,

›K-

›t
1= �Q-

K 5G-
K 2= � (v̂;-F̂;-)2 v̂;-â;-1F-

K,p1F-
K,h

5G-
K 2= �Q-

P 2 b- 1F-
K,p 1F-

K,h.

(49)

Here Q-
P 5 v̂;-F̂;-, and b- 5 v̂;-â;- is the rate of

buoyancy conversion.

It is necessary to derive the expressions in spherical

coordinates. If the vertical coordinate is z, then the

Lamé’s coefficients are hl ’ a cosu, hu ’ a, and hz 5 1,

where a is the radius of Earth and l and u are longitude

and latitude, respectively; thus, the divergence of

Q-
K 5 (Q-

K,l, Q
-
K,u, Q

-
K,z) is

= �Q5
1

h
l
huhz

24›(huhz
Q-

K,l)

›l
1

›(h
l
h
z
Q-

K,u)

›u
1

›(h
l
huQ

-
K,z)

›z

35
5

1

a cosu

›Q-
K,l

›l
1

1

a cosu

›(Q-
K,u cosu)

›u
1

›Q-
K,z

›z
. (50)

If the vertical coordinate is p, = �Q-
K can also be approximately expressed as

= �Q-
K 5

1

a cosu

›Q-
K,l

›l
1

1

a cosu

›(Q-
K,u cosu)

›u
1

›Q-
K,p

›p
. (51)
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For the components of Q-
K, refer to (43)–(45). Note

that this is just an approximate expression, as this is

not strictly an orthogonal frame. However, since the

shell of the atmosphere is thin (shallow-water as-

sumption), the p direction may be viewed as un-

affected, just as in the geographic coordinate system.

Likewise,

= �Q-
P 5

1

a cosu
›(û;-F̂;-)

›l

1
1

a cosu
›(ŷ;-F̂;- cosu)

›u
1
›(v̂;-F̂;-)

›p
. (52)

The difficulty is with the transfer term. It would be easier

to start from (46). By the result of appendix C,

= � (vv)5
�

1

a cosu

�
›u2

›l
2 uy sinu1 uv cosu1

›(yu cosu)
›u

�
1

›vu

›p

�
e
l

1

�
1

a cosu

�
›uy

›l
1 u2 sinu1

›(y2 cosu)
›u

1 yv cosu

�
1

›vy

›p

�
eu

1

�
1

a cosu

�
›uv

›l
2 u2 cosu1

›(yv cosu)
›u

2 y2 cosu

�
1
›v2

›p

�
e
p
. (53)

In particular,

= � (vv
h
)5

�
1

a cosu

�
›u2

›l
2 uy sinu1

›uy cosu
›u

�
1

›vu

›p

�
e
l

1

�
1

a cosu

�
›uy

›l
1 u2 sinu1

›y2 cosu
›u

�
1

›vy

›p

�
eu 2

�
u2 1 y2

a

�
e
p
.

So

G-
K 52[= � d(vv

h
)
;-

] � v̂;-
h 1= �Q-

K

52

8><>: 1

a cosu

264›d(u2)
;-

›l
2 d(uy);-

sinu1
›d(uy);-

cosu
›u

3751
›d(vu);-

›p

9>=>;û;-

2

8><>: 1

a cosu

264›d(uy);-

›l
1d(u2)

;-
sinu1

›d(y2);-
cosu

›u

3751
›d(vy);-

›p

9>=>;ŷ;-

1
1

2

1

a cosu
›

›l
[d(uu);-

û;- 1 d(uy);-
ŷ;-]1

1

2

1

a cosu
›

›u
fcosu[d(yu);-

û;- 1d(yy);-
ŷ;-]g

1
1

2

›

›p
[d(vu);-

û;- 1 d(vy);-
ŷ;-]

5
1

2a cosu

264d(u2)
;-›û;-

›l
2 û;-›

d(u2)
;-

›l

3751
1

2a cosu

"d(uy);-›ŷ;-

›l
2 ŷ;-›

d(uy);-

›l

#

1
1

2a cosu

"d(uy);-
cosu

›û;-

›u
2 û;-›

d(uy);-

›u
cosu

#
1

1

2a cosu

264d(y2);-
cosu

›ŷ;-

›u
2 ŷ;- ›

d(y2);-

›u
cosu

375
1

1

2

"d(vu);-›û;-

›p
2 û;-›

d(vu);-

›p

#
1
1

2

"d(vy);-›ŷ;-

›p
2 ŷ;-›

d(vy);-

›p

#
1

tanu
a

[û;-d(uy);-
2 ŷ;-d(u2)

;-
]. (54)

Obviously, the first six brackets are all in canonical form

as shown in section 3 and, hence, represent canonical

transfers. For the last term, by the property of margin-

alization (note here the dependence on n is suppressed),
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�
-
�
n

[û;-d(uy);-
2 ŷ;-d(u2)

;-
]5 u(uy)2 y(u2)5 0. So they, as a whole, make G-

K a canonical transfer. The

above formula can be further reduced to

G-
K 5

1

2a cosu

264d(u2)
;-›û;-

›l
2 û;-›

d(u2)
;-

›l
1 d(uy);-›ŷ

;-

›l
2 ŷ;-›

d(uy);-

›l

375
1

1

2a

264d(uy);-›û;-

›u
2 û;- ›

d(uy);-

›u
1d(y2);-›ŷ;-

›u
2 ŷ;- ›

d(y2);-

›u

375
1

1

2

"d(uv);-›û;-

›p
2 û;- ›

d(uv);-

›p
1 d(yv);-›ŷ;-

›p
2 ŷ;- ›

d(yv);-

›p

#

1
3

2a
tanu[û;-d(uy);-

2 ŷ;-d(u2)
;-

]1
1

2a
ŷ;- tanu[d(u2)

;-
1d(y2);-

] . (55)

Note that in computing G-, we just need to perform

the MWT of nine variables—namely, the six distinct

entries of the matrix0B@ u2 uy uv

uy y2 yv

uv yv v2

1CA
plus u, y, and v. The expression of G-, albeit complex,

is a combination of these variables. The other terms can

be easily expressed.

c. Multiscale available potential energy equation

Following the tradition since Lorenz (1955), APE is

defined as

A5
1

2

g

T(L
d
2L)

T2 [
1

2
cT2 , (56)

where

c5
g

T(L
d
2L)

5
g

T(g/c
p
2L)

. (57)

Originally Lorenz examined the quantity in a bulk form;

we relieve the integration to define a local APE. Be-

sides, we multiply it by g to ensure a dimension consis-

tent with that of the kinetic energy in the preceding

section.

Multiply the heat equation in (40) by cT to get

›A

›t
1 cT= � (vT)1Tvac

L2L
d

g
1Tvac

L2L
d

g

5 cT
_q
net

c
p

.

Or

›A

›t
1= � (vA)5av1

T

T
av1Av

›logc

›p
1 cT

_q
net

c
p

, (58)

where b 5 av is the buoyancy conversion rate,

(T/T)b � b is the correction term, and Av(› log c/›p)

is the apparent source/sink due to the background

temperature profile. In the course of derivation, the

ideal gas law a/T5R/p has been used.

To arrive at the multiscale APE equation, take an

MWT on both sides of (40), followed by a multiplication

with cT̂;-. This gives

›A-

›t
1 cT̂;-= � d(vT);-

5 T̂;-v̂;-a

T
1 T̂;- d(va);- 1

T
1

c

c
p

T̂;- d( _q
net
)
;-

.

Write the source term as

F-
A 5

c

c
p

T̂;- d( _q
net
)
;-

,

and let

b- 5
a

T
T̂;-v̂;- 5

R

p
T̂;-v̂;- 5 â;-v̂;- and (59)

SA0 5
1

T
T̂;- d(va);-

5
R

p
T̂;- d(vT);- 1

T
, (60)

where b- is the buoyancy conversion rate and the other

is its correction term. Further, separate the flux from the

transfer terms:
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Q-
A 5

1

2
cd(vT);-

T̂;- and (61)

G-
A 52cT̂;-= � d(vT);-

1= �Q-
A2

1

2
T̂;-d(vT);-›c

›p
, (62)

where

1

2
T̂;- d(vT);-›c

›p
[ SA00 (63)

is the apparent source/sink term due to the vertical

variation of c5 c(T). This correction term makes G-
A

canonical. To see it, notice that

G-
A 52cT̂;-= � d(vT);-

1
1

2
= � [cT̂;- d(vT);-

]2
1

2
T̂;- d(vT);-›c

›p

5
1

2
c[ d(v

h
T)

;- � =
h
T̂;- 2 T̂;-=

h
� d(v

h
T)

;-
]1

1

2
cT̂;-›

d(vT);-

›p
1

1

2
d(vT);-›cT̂;-

›p
2

1

2
T̂;- d(vT);-›c

›p

5
c

2
[ d(v

h
T)

;- � =
h
T̂;- 2 T̂;-=

h
� d(v

h
T)

;-
]1

c

2

" d(vT);-›T̂;-

›p
2 T̂;-›

d(vT);-

›p

#

5
c

2
[d(vT);- � =T̂;- 2 T̂;-= � d(vT);-

] , (64)

which is precisely in the canonical form. Following the

proof in the preceding section, it is easy to show that

�n�-G
-
A 5 0.

Combine S0 and S00 as one apparent source term to give

S-
A 5 SA01 SA005

1

2
T̂;- d(vT);-›c

›p
1

1

T
T̂;- d(va);-

. (65)

In real applications, this is usually negligible. The mul-

tiscale APE equation now becomes

›A-

›t
1= �Q-

A 5G-
A 1 b- 1 S-

A 1F-
A . (66)

In the spherical coordinates,

= �Q-
A 5

c

2a cosu
›[d(uT);-

T̂;-]

›l
1

c

2a cosu
›[d(yT);-

T̂;- cosu]
›u

1
1

2

›[c d(vT);-
T̂;-]

›p
and (67)

G-
A 5

c

2

(
1

a cosu
d(uT);-›T̂;-

›l
1

1

a
d(yT);-›T̂;-

›u
1 d(vT);-›T̂;-

›p

2
1

a cosu
T̂;-›

d(uT);-

›l
2

1

a cosu
T̂;-›[

d(yT);-
cosu]

›u
2 T̂;-›

d(vT);-

›p

)
. (68)

d. A note on the units

Currently the energetic terms have the units of meters

squared per second cubed, if the SI base units are used.

However, caution should be used when total or regional

subtotal energetics are to be computed. Since here

density is not a constant, one cannot just integrate the

local fields with respect to a volume to obtain the bulk

energetics. If the system is a Cartesian one, this will be

problematic, since (1/2)rvh � vh is not a quadratic vari-

able; the variation of rmust also be taken into account in

the above derivations.

This is, however, avoidable in an isobaric frame. An

integration with respect to the ‘‘volume’’ form dxdy(2dp)

yields the real energy multiplied by a constant g.

e. Wrap-up

To wrap up, the multiscale kinetic and available en-

ergy equations are

›K-

›t
1= �Q-

K 5G-
K 2= �Q-

P 2 b- 1F-
K,p 1F-

K,h (69)

and

›A-

›t
1= �Q-

A 5G-
A 1 b- 1 S-

A 1F-
A . (70)

It should be mentioned that all the terms are to be

multiplied by a constant factor 2j2 , where j2 is the upper

bound of the scale level of the smallest scale window.

For reference, the expressions for the energetics are
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tabulated in Table 1. Also tabulated are the expressions

in spherical coordinates (l, u, p) (Table 2).

The energy flow for a multiple-scale window decompo-

sition is schematized inFig. 3.As is seen, canonical transfers

mediate between the scale windows; they represent the

interscale processes such as instabilities. In contrast, buoy-

ancy conversions and transports function only within the

respective individual windows; the former bring together

the two types of energy—namely, APE and KE—while

that latter allow different spatial locations to communicate.

5. Multiscale oceanic energetics

a. Primitive equations

The multiscale ocean energy equations have been

derived in LR05. We incorporate them here for

completeness, together with some modification and

correction.

For an incompressible and hydrostatic Boussinesq

fluid flow, the primitive equations are

›v
h

›t
1v

h
�=

h
v
h
1w

›v
h

›z
1fk3v

h
52

1

r
0

=
h
P1F

m,z
1F

m,h
,

(71)

›P

›z
52rg , (72)

=
h
� v

h
1

›w

›z
5 0, and (73)

›r

›t
1 v

h
� =

h
r1w

›r

›z
5

N2r
0

g
w1F

r,z
1F

r,h
, (74)

TABLE 1. Multiscale energetics for the atmospheric circulation (m2 s23 if SI base units are used). If total or regional total energies (W) are

to be computed, the resulting integrals with respect to (x, y, p) should be divided by g. All terms are to be multiplied by 2j2 .

K- 1

2
v̂;-
h � v̂;-

h
KE on scale window -

Q-
K

1

2
d(vvh);- � v̂;-

h Flux of KE on window -

G-
K

1

2
[ d(vvh);-

:=v̂;-
h 2= � d(vvh);- � v̂;-

h ] Canonical transfer of KE to window -

Q-
P v̂;-F̂;- Pressure flux

b- v̂;-â;- Buoyancy conversion

A- 1

2
c(T̂;-)2, c5

g

T(g/cp 2L)
APE on scale window -

Q-
A

1

2
cT̂;- d(vT);-

Flux of APE on window -

G-
A

c

2
[d(vT);- � =T̂;- 2 T̂;-= � d(vT);-

] Canonical transfer of APE to window -

S-
A

1

2
T̂;- d(vT);-›c

›p
1

1

T
d(va);-

Apparent source/sink (usually negligible)

TABLE 2. Expansion of the canonical transfers in Table 1 in spherical coordinates.

G-
K

1

2a cosu

264d(u2)
;- ›û;-

›l
2 û;-›

d(u2)
;-

›l
1 d(uy);-›ŷ;-

›l
2 ŷ;-›

d(uy);-

›l

375

1
1

2a

264d(uy);-›û;-

›u
2 û;-›

d(uy);-

›u
1d(y2);-›ŷ;-

›u
2 ŷ;- ›

d(y2);-

›u

375
1
1

2

"d(uv);-›û;-

›p
2 û;- ›

d(uv);-

›p
d(yv);-›ŷ;-

›p
2 ŷ;- ›d(yv);-

›p

#

1
3

2a
tanu[û;-d(uy);-

2 ŷ;-d(u2)
;-

]

1
1

2a
ŷ;- tanu[d(u2)

;-
1d(y2);-

]

G-
A

c

2f 1

a cosu
d(uT);-›T̂;-

›l
1
1

a
d(yT);-›T̂;-

›u
1 d(vT);-›T̂;-

›p

2
1

a cosu
T̂;-›

d(uT);-

›l
2

1

a cosu
T̂;-›[

d(yT);-
cosu]

›u
2 T̂;-›

d(vT);-

›p g
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where the subgrid process parameterization are sym-

bolically written as Fm and Fr. For the other notations,

refer to appendix A.

b. Multiscale APE equation

Following Lorenz’s convention, available potential

energy is defined to be

A5
1

2

g2

r20N
2
r2 [

1

2
cr2 , (75)

where

c5
g2

r20N
2
5

g

r
0
s

and s52
›r(z)

›z
. (76)

For a recent careful discussion on Boussinesq approxi-

mation and potential energy, refer to Ingersoll (2005).

As argued before, the multiscale APE on window - at

step n is c(r̂;-)2/2. Take MWT on both sides of the

equation of density anomaly and multiply with cr̂;-. It

has been shown by LR05 that, to a good approximation,

FIG. 3. Schematic of the energy flow for (a) two-window and (b) three-window de-

composition. Clearly, buoyancy conversions take place within their respective scale windows;

they are not indicators of instabilities. For clarity, the transfers G042/1, G142/0, and G041/2 are

not drawn in (b). The transports of APE, KE, and pressure also take place within their re-

spective scale windows only (not shown).
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cr̂;- d(›r/›t);-
can be identified as ›A-

n /›t. The resulting

APE equation is, therefore,

›A-
n

›t
1 cr̂;-(bv � =

h
r)

;-
1 cr̂;-

d�
w
›r

›z

�;-

5
g

r
0

r̂;-ŵ;- 1F-
A,z 1F-

Ah
,

where

=
h
r5

1

a cosu
›r

›l
e
l
1
1

a

›r

›u
eu (77)

and

g

r
0

r̂;-ŵ;- [b-
n (78)

is the rate of buoyancy conversion.

The key to the multiscale energetics formalism is

the separation of flux and transfer processes. From

the result of section 3a, the flux of APE by v at step

n on window - is

Q-
A 5

1

2
cr̂;-d(vr);-

. (79)

Hence the above equation can be written as

›A-

›t
1= �Q-

A 5 [2cr̂;-( dv � =r);-
1= �Q-

A]

1 b-
n 1F-

A,z 1F-
A,h.

But the bracket on the rhs is still not the canonical

transfer that we are seeking for. Since c5 c(z), it does

not summarize to zero over n and -. In fact,

�
-
�
n

[2cr̂;-(bv � =r);-
1= �Q-

A]52cr= � (rv)1 1

2
= � [cr(vr)]5 1

2

›c

›z
r2w ,

where the overbar denotes averaging over the time pe-

riod. To fix the problem, write

S-
A,n 5

1

2

›c

›z
r̂;- d(rw);-

, (80)

which is the apparent source/sink due to the vertical

stratification. Then

G-
A 5 [2cr̂;-(bv � =r);-

1= �Q-
A,n]2 S-

A,n

5
c

2
[d(vr);- � =r̂;- 2 r̂;-= � d(vr);-

] (81)

proves to be canonical. The multiscale APE equation is,

accordingly,

›A-

›t
1= �Q-

A 5G-
A 1 b- 1S-

A 1F-
A,z 1F-

A,h. (82)

In the spherical coordinate frame, by (50), we have

= �Q-
A5

c

2acosu

�
›

›l
[r̂;-d(ur);-

]1
›

›u
[r̂;-d(yr);-

cosu]

�
1
1

2

›

›z
[cr̂;- d(wr);-

]

(83)

and

G-
A 5

c

2

�
1

a cosu
d(ur);-›r̂;-

›l
1

1

a
d(yr);-›r̂;-

›u

1 d(wr);-›r̂;-

›z
2r̂;-

"
1

a cosu
›d(ur);-

›l

1
1

a cosu
›d(yr);-

cosu
›u

1
›d(wr);-

›z

#)
. (84)

c. Multiscale KE equation

The equation governing the evolution of the multi-

scale KE

K- 5
1

2
v̂;- � v̂;- (85)

can be obtained by taking MWT on both sides of the

horizontal momentum equations, followed by a dot

product with v̂;-. This results in

›K-
n

›t
1 (bv � =v

h
);- � v̂;-

h 52
1

r
0

v
h
� =

h
P̂;- 1F-

K,z 1F-
K,h

52v � =P̂
;-

r
0

1 ŵ;-›P̂
;-/r

0

›z
1F-

K,z 1F-
K,h

52= �
 
v̂;-P̂

;-

r
0

!
2

g

r
0

r̂;-ŵ;- 1F-
K,z 1F-

K,h

[2= �Q-
P 2 b- 1F-

K,z 1F-
K,h,
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where b- is the buoyancy conversion rate and2= �Q-
P

the pressure working rate. In the above derivation,

(72) and (73) (incompressibility and hydrostaticity,

respectively) have been used.

By the transport–transfer separation, the above mul-

tiscale KE equation can be written as

›K-

›t
1= �Q-

K 5G-
K 2= �Q-

P 2 b- 1F-
K,z 1F-

K,h, (86)

where

Q-
K 5

1

2
d(vv

h
)
;- � v̂;-

h (87)

and

G-
K 52(bv � =v

h
)
;-

� v̂;-
h 1= �Q-

K

52= � d(vv
h
)
;- � v̂;-

h 1= �Q-
K,n

5
1

2
fd(vv

h
)
;-

:=v̂;-
h 2 [= � d(vv

h
)
;-

] � v̂;-
h g, (88)

which are precisely the same as that for the atmosphere

case. In the spherical coordinates, (l, u, z), = �Q-
K, and

G-
K are also like that in (51) and (55), except that

v should be replaced by w and p by z.

d. Wrap-up

To wrap up, the multiscale ocean energetic equa-

tions are

›A-

›t
1= �Q-

A 5G-
A 1 b- 1 S-

A 1F-
A,z 1F-

A,h (89)

and

›K-

›t
1= �Q-

K 5G
K- 2= �Q-

P 2 b- 1F-
K,z 1F-

K,h. (90)

Refer to Table 3 for the expressions.

6. Multiscale quasigeostrophic energetics

The multiscale energy equations like (49) and (66)

cannot be directly derived from the quasigeostrophic

(QG) equation. We have to go back to where the QG

equation comes from and do the derivation, and this is

what Pinardi and Robinson (1986) did with their re-

gional QG energetics.

Since the atmosphere and ocean share the same QG

equation, it suffices to start off the derivation from either

(37)–(41) or (71)–(74). As a z coordinate is desired, we

choose the latter. To simplify the presentation, the dis-

sipative and diffusive processes are omitted. They are not

essential to the derivation, and their effect may be added

symbolically after the other terms are finalized. From

appendix C, the QG equation we will be dealing with is

›

›t

�
=2
hc1

›

›z

�
F2
r

N2

›c

›z

��
1a

‘
J

�
c,

�
=2
hc1

›

›z

�
F2
r

N2

›c

›z

���
1b

›c

›x
50,

(91)

where Fr is the rotational internal Froude number,a‘ is a

dimensionless measure of the importance of advection,

and J is the Jacobian operator; the other notations are

conventional and the reader is referred to appendix A.

TABLE 3. Multiscale energetics for oceanic circulations (m2 s23 if SI base units are used). The expressions in spherical coordinates are the

same in form as that in Table 2, except that the coordinate p should be replaced by z and T by r. All terms are to be multiplied by 2j2 .

K- 1

2
v̂;-
h � v̂;-

h
KE on scale window -

Q-
K

1

2
[ d(vvh);- � v̂;-

h ] Flux of KE on window -

G-
K

1

2
[ d(vvh);-

:=v̂;-
h 2= � d(vvh);- � v̂;-

h ] Canonical transfer of KE to window -

Q-
P

1

r0
v̂;-P̂;- Pressure flux on window -

b- g

r0
r̂;-ŵ;- Buoyancy conversion on window -

A- 1

2
c(r̂;-)2, c5

g2

r20N
2

APE on window -

Q-
A

1

2
[cr̂;-d(vr);-

] Flux of APE on window -

G-
A

c

2
[d(vr);- � =r̂;- 2 r̂;-= � d(vr);-

] Canonical transfer of APE to window -

S-
A

1

2
r̂;- d(vr);-›c

›z
Apparent source/sink of A- (usually negligible)
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a. QG kinetic energetics

The inviscid versionof theKEequation [(89)] is rewritten as

›K-

›t
1=

h
�Q-

K,h 1
›Q-

K,z

›z
5G-

K,h 1G-
K,z

2=
h
�Q-

P,h 2
›Q-

P,z

›z
2b- , (92)

where

G-
K,h 52=

h
� d(v

h
v
h
)
;- � v̂;-

h 1=
h
�Q-

K,h and (93)

G-
K,z 52

› d(wv
h
)
;-

›z
� v̂;-

h 1
›Q-

K,z

›z
. (94)

In the transport and transfer terms, the effects due to hor-

izontal advection and vertical advection are distinguished.

As we will see soon, this will greatly help simplify the QG

energetics.

Using the usual scaling (e.g., McWilliams 2006),

(x, y);L
0
, z;H

0
, t; t

0
,

(u, y);U
0
, w;

H
0

L
0

U
0
,

f ; f
0
, N;N

0
,

P;U
0
f
0
r
0
L

0
, and r ;

f
0
U

0
L

0

gH
0

r
0
,

and noticing that the multiscale window transform does

not affect the scaling, it is easy to have

›K-

›t
;

U2
0

t
0

;

=
h
Q-

K,h and
›Q-

K,z

›z
;

U3
0

L
0

;

G-
K,h and G-

K,z ;
U3

0

L
0

;

=
h
�Q-

P,h and
›Q-

P,z

›z
;U2

0 f0; and

b- 5
g

r
0

r̂;-ŵ;- ;U2
0 f0 .

This will yield the nondimensionalized kinetic energetics.

For clarity, hereafter throughout this subsection, all

variables are understood as nondimensional. From

above, (92) is now reduced to its nondimensional form:

«
›K-

›t
1 «a

‘
=
h
�Q-

K,h 1 «a
‘

›Q-
K,h

›z

5 «a
‘
G-
K,h 1 «a

‘
G-
K,z 2=

h
�Q-

P,h 2
›Q-

P,z

›z
2 b- , (95)

where «5 1/f0t0 is the Rossby number and a‘ 5U0t0/L0

measures the relative importance of advection to local

change. In many textbooks, a‘ is taken to be one, so that

«a‘ 5U0/f0L0 is defined as the Rossby number.

As usual, expand the variables in the power of «,

P5 [P]
0
1 «[P]

1
1 «2[P]

2
1 . . . , (96)

w5 [w]
0
1 «[w]

1
1 «2[w]

2
1 . . . , (97)

v
h
5 [v

h
]
0
1 «[v

h
]
1
1 «2[v

h
]
2
1 . . . , and (98)

r5 [r]
0
1 «[r]

1
1 «2[r]

2
1 . . . . (99)

Based on these expansions, the multiscale energetic

terms can also be expanded. For example,

K5 [K]
0
1 «[K]

1
1 . . . ,

where [K]0 5 (1/2)[vh]0 � [vh]0, [K]1 5 [vh]0 � [vh]1, and so

forth. By the classical result [see (C5)–(C7) in appendix

C], [w]0 5 0. So

«
›Q-

K,z

›z
5 «

›

›z

1

2
[ d(wv

h
)
;- � v

h
];O(«2) .

Likewise,

«G-
K,z ;O(«2),

›

›z
Q-

P,z 5
›

›z
(ŵ;-P̂;-)5 «

›

›z
([ŵ;-]

1
[P̂;-]

0
)1O(«2),

b- 5 r̂;-ŵ;- 5 «[r̂;-]
0
[ŵ;-]

1
1O(«2) .

Substituting the power expansions into (95), taking into

account the above facts, and equating the terms of like

power, we have, to O(«0),

=
h
� ([v̂;-

h ]
0
[P̂;-]

0
)5 0.

So a huge part of the pressure working rate is actually

zero. To O(«1),

›[K-]
0

›t
1a

‘
=
h
� [Q-

K,h]0 5a
‘
[G-

K,h]0 2=
h
� [Q-

P,h]1 2
›

›z
[Q-

P,z]1 2 [b-]
1

5a
‘
G-
K,h 2=

h
� ([v̂;-

h ]
0
[P̂;-]

1
1 [v̂;-

h ]
1
[P̂;-]

0
)2

›

›z
([ŵ;-]

1
[P̂;-]

0
)2 [r̂;-]

0
[ŵ;-]

1
.

To this order, [vh]0 is the geostrophic flow:

[vh]0 5 k 3 =[P]0 and [r]0 is 2›[P]0/›z by

hydrostaticity. [w]1 and [vh]1 can also be obtained

[see (C8)–(C9)]:
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[w]
1
52

F2
r

N2
L
�
›[P]

0

›z

�
and

[v
h
]
1
5 k3L ([v

h
]
0
)2by[v

h
]
0
1 k3=

h
[P]

1
,

where Fr 5 f0L0/N0H0 is the rotational internal Froude

number and L stands for the operator

L [
›

›t
1a

‘
[v

h
]
0
� =

h
(100)

(i.e., advection by the geostrophic flow). With these, it

is straightforward to compute [K-]0, [Q-
K,h]0, [G-

K,h]0,

›/›z[Q-
P,z]1, and [b-]1. The difficulty comes from the

horizontal pressure working rate [Q-
P,h]1, where [P̂

;-]1 is

involved. But

=
h
� ([v̂;-

h ]
0
[P̂;-]

1
1 [v̂;-

h ]
1
[P̂;-]

0
)

5=
h
� ([v̂;-

h ]
0
[P̂;-]

1
1 fk3 (bL [v

h
]
0
)
;-

2by[v̂;-
h ]

0
1 k3=

h
[P̂;-]

1
g[P̂;-]

0
)

5=
h
� (fk3 (bL [v

h
]
0
)
;-

2by[v̂;-
h ]

0
g[P̂;-]

0
)1=

h
� ([v̂;-

h ]
0
[P̂;-]

1
1 k3=

h
[P̂;-]

1
[P̂;-]

0
) .

Notice that the second divergence vanishes. In fact, it is

=
h
� (k3=

h
[P̂;-]

0
[P̂;-]

1
1 k3=

h
[P̂;-]

1
[P̂;-]

0
)

52k � =
h
3 (=

h
[P̂;-]

0
[P̂;-]

1
1=

h
[P̂;-]

1
[P̂;-]

0
)5 0.

Hence the whole pressure working rate

=
h
� [Q-

P,h]1

5=
h
� (fk3 (bL [v

h
]
0
)
;-

2by[v̂;-
h ]

0
g[P̂;-]

0
):

(101)

As a convention, denote [P]0 as c, and for conve-

nience, write [vh]0 5 k3=hc as vg (geostrophic veloc-

ity). Distinguishing the QG energetics terms with a

subscript g, the multiscale KE now becomes

›

›t
K-

g 1=
h
�Q-

g,K 5G-
g,K 2=

h
�Q-

g,P,h 2
›

›z
Q-

g,P,z 2 b-
g ,

(102)

where

K-
g 5

1

2
bv
g

;- � bv
g

;-
, (103)

Q-
g,K 5a

‘
[Q-

K,h]0 5
1

2
a
‘
b(v
g
v
g
)
;- � bv

g

;-
, (104)

G-
g,K 5a

‘
[G-

K,h]0

5
a
‘

2
[b(v

g
v
g
);-:=

h
bv
g

;- 2=
h
�b(v

g
v
g
)
;- � bv

g

;-
] ,

(105)

Q-
g,P,h 5

n
k3L ( bv

g

;-
)2bybv

g

;-
o
ĉ;- , (106)

Q-
g,P,i 52

F2
r

N2
ĉ;-

�b
L
�
›c

›z

��;-

, and (107)

b-
g 5

F2
r

N2

›ĉ;-

›z

�b
L
�
›c

›z

��;-

(108)

(recall that all are to bemultiplied by a constant fact 2j2 ).

b. QG available potential energetics

Rewrite the nondiffusive version of theAPE equation

[(90)] as

›A-

›t
1=

h
�Q-

A,h 1
›Q-

A,z

›z
5G-

A,h 1G-
A,z 1 b- 1 S-
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Using the scaling as shown in the preceding subsection,

we have
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where Fr 5 f0L0/N0H0 is the rotational internal Froude

number (compared to the Froude number U0/N0H0). Like-

wise, all the remaining terms, except b- ;U2
0 f0 (as given in

the preceding subsection), are on the order of (U3
0 /L0)F

2
r .

As in thepreceding subsection, let«5 1/f0t0 be theRossby

number and let a‘ 5U0t0/L0. The scaled nondiffusive

APE equation (throughout the remainder of this sub-

section, all the variables are nondimensional) is, therefore,

«F2
r

�
›A-

›t
1a

‘
=
h
�Q-

A,h 1a
‘

›

›z
Q-

A,z

�
5 «F2

r a‘
(G-

A,h 1G-
A,z)1b- 1 «F2

r S
-
A . (110)

Usually Fr is taken asO(1), but « is small. Expanding in

the power of «, since [w]0 5 0 (cf. appendix C), it is easy

to show that

«
›

›z
Q-

A,z ; «G-
A,z ; «S-

A ; O(«2) .
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In other words, when only O(«) is considered, all these

terms are negligible. Therefore, the resulting APE equa-

tion is, to O(«),

F2
r

›[A-]
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1a

‘
F2
r=h � [Q-

A,h]0 5a
‘
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r [G

-
A,h]01 [b-]

1
. (111)

For clarity, this is symbolically written as

›

›t
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g , (112)

where
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c. Wrap-up

To summarize, themultiscale energy equations for the

inviscid QG equation [(91)] are

›
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(114)

The explicit expressions of the energetic terms are tab-

ulated in Table 4. Table 5 gives the canonical transfers in

spherical coordinates.

7. Interaction analysis and horizontal treatment

a. Interaction analysis

An energy transfer process toward a certain location

in a scale window involves not only the transfer from

TABLE 4. Expansion of the QG energetics for (91); vg 5 k3=hc, L 5 › /›t1 J(c, �).
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outside the window but also those from within. This is a

fundamental point where it differs from that based on

the classical Fourier transform or Reynolds decompo-

sition. Take for an example a transfer2 G1
n at location

(step) n in window 1. As schematized in Fig. 4, it is the

totality of the transfers from window 0, window 2, and

those from the other different locations (the sampling

space) within the same window. We need to distinguish

these subprocesses in order for the window–window

interactions to stand out.

As shown above, all the transfers can be written as a

linear combination of terms in the form

G-
n 5 R̂;-

n
d(pq);-

n .

It therefore suffices to analyze this single term. To make

the presentation easier, we here just pick the particular

case G1
n. For a detailed treatment, see LR05, section 9.

Now what we are considering is the transfer

G1
n 5 R̂;1

n
d(pq);1

n 5 R̂;1
n

0B@b�2
v150
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2
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n [(bp;0q;2)

n
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;1 .

The first two terms represent the energy transfers to

scale window 1 fromwindows 0 and 2, respectively; write

them as G0/1
n and G2/1

n . The two-scale windowsmay also

combine to contribute to G1
n, though generally the con-

tribution is negligible; this makes the third term, or

G042/1
n for short. The last term, G1/1

n 5 R̂;1
n (bp;1q;1)

;1

n ,

is the transfer from window 1 itself. The major purpose

of interaction analysis is, for scale window 1, to select

G0/1
n and G2/1

n out of G1
n.

For canonical transfers to other scale windows, refer

to Table 6.

b. Phase oscillation

The localized multiscale energetics as introduced

above may reveal some spurious high-wavenumber os-

cillation that must be removed. This is a fundamental

problem with real-valued localized transforms, which

has been carefully examined by Iima and Toh (1995) in

the context of shock waves and wavelet analysis. Since

FIG. 4. A schematic of the canonical energy transfer toward scale

window 1.

TABLE 5. Expansion of the QG canonical transfers in spherical coordinates.
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2 In this section, the dependence on n is kept in the notations.
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this is a technical issue that may prevent one from

making the right interpretation, we here give it a brief

introduction; for details, refer to LR05.

As others, the MWT transform coefficients contain

phase information, and so do the resulting multiscale

energies, which are essentially the square of the co-

efficients. The phase information may not be obvious in

the sampling space of the transform coefficients (with el-

ements labeled by n) because of its discrete nature. But

the disguised information may appear in the horizontal

through a mechanism like Galilean transformation. (In

the vertical direction it is negligible because the vertical

velocity is generally very weak for geofluid flows.) To il-

lustrate, look at (7), which defines the MWT. The char-

acteristic frequency is fc ; 2j2 cycles over the time

duration. Let the time step size beDt, then fc ; 1/Dt. For a
flow with speed u0, the oscillation in time with fc will re-

sult in an oscillation in the horizontal with a wavelength

;u0Dt—that is, a wavenumber kc ; (1/u0Dt). Let the

mesh size beDx. For amodel to be numerically stable, the

CFL condition requires that Dt,Dx/u0. So the spurious

oscillation has a wavenumber kc ;O(1/Dx).
The phase oscillation is a problem rooted in the nature

of localized transforms. In our case, fortunately, it is

always around the highest wavenumbers or smallest

spatial scales in the spectrum and is, hence, very easy to

be removed using, for example, a 2D large-scale window

reconstruction (like a horizontal low-pass filtering). This

is in contrast to wavelet analysis: the larger the scale

for a transform coefficient, the larger the scale for the

spurious oscillation (Iima and Toh 1995).

In real applications the spurious oscillation may not

show up, just as in the MJO case, which we will demon-

strate in the following section. But in some unusual cases

this could cause severe errors. We have shown such an

example before in LR05 (see the Fig. 2 therein). The

analysis is with a simulation of an observedmeandering in

the Iceland–Faeroe frontal region in August 1993. The

mesh grid has a spacing Dx5Dy5 2:5 km, and the time

step size is 1800 s. The time series for the multiscale

energetics analysis has a sampling interval of 10Dt. So,
by the above argument, the phase oscillation, if exist-

ing, will have a wavelength less than 103Dx5 25 km.

Indeed, as shown in Fig. 2a of LR05, the computed

canonical transfer of APE is buried in oscillatory er-

rors, with a wavelength of about eight grid points or

20 km. These errors are efficiently removed through a

2D multiscale window reconstruction with a scale of

25 km; the resulting transfer is shown in their Fig. 2b.

(This can also be achieved efficiently using the tradi-

tional 2D low-pass filters.)

8. Exemplification with the Madden–Julian
oscillation

The above formalism has been validated in previous

publications and has seen its success in different real

applications. This section is a demonstration of how it

may be applied, with the MJO as an example. Note here

it is not our intention to perform a comprehensive

analysis of the MJO energetics, which will be carefully

explored in a forthcoming study.

MJO is a coupled convection–circulation phenomenon,

manifesting itself as a localized structure of enhanced and

suppressed precipitation propagating in the zonal direction

at a speed of 4–8ms21 (cf. Fig. 5). It is the largest element

of intraseasonal variability in the tropical atmosphere

(Madden and Julian 1971). Though extending through the

whole tropics, the anomalous rainfall occurs mainly over

the Indian Ocean and western Pacific Ocean. The oscil-

lation has a broadband spectrum between the 30- and 60-

day periods. It is usually strong in winter and spring and

weak in summer. By observation, it originates over the

western Indian Ocean, strengthens as it enters the west-

ern Pacific, and dies out east of the date line. According

to Wheeler and Hendon (2004), a complete MJO cycle

comprises eight phases, each corresponding to the posi-

tion of the center of the anomalous rainfall, from western

Indian Ocean to eastern Pacific Ocean. As an intra-

seasonal phenomenon, MJO bridges the large-scale and

small-scalemotions in the atmospheric spectrum, making

an important component of the atmospheric circulation.

Various studies have established its connections to trop-

ical cyclogenesis, El Niño–Southern Oscillation, and

South Asia monsoon, to name a few [see Madden and

Julian (2005) and the references therein].

With large-scale atmospheric circulation and tropical

deep convection intricately coupled, MJO provides an

excellent example for the study of multiscale in-

teraction. Analytical investigations of the interaction

has been made available in the systematic work of

Majda et al. (e.g., Majda and Biello 2004; Majda and

TABLE 6. Interaction analysis for G0, G1, and G2.

G2 G0/2 G1/2 G041/2 G2/2

G1 G0/1 G2/1 G042/1 G1/1

G0 G1/0 G2/0 G142/0 G0/0

Remark Instability related Instability related Usually negligible
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Yang 2016). Notice the localized and progressive pat-

tern: it makesMJO an ideal test bed for our formalism of

multiscale energetics. We are therefore using it for our

purpose of demonstration.

The data we are using include those from the Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) interim reanalysis (ERA-Interim; http://www.

ecmwf.int/en/research/climate-reanalysis/era-interim) daily

products (wind, temperature, and geopotential height)

and the series of the real-time multivariate MJO (RMM)

(Wheeler and Hendon 2004). They have a spatial reso-

lution of 2:583 2:58 and span from 1988 through 2010.

The vertical temperature profile, T5T(p), which is

needed in the application, is obtained by taking the time

mean ofT, followed by an averaging over all the p planes.

To begin, we need to demarcate the scalewindows. The

problem forms a natural three-window decomposition:

large-scale variabilities,MJO, and synoptic processes.We

choose an MJO window of 32–64 days, since in the

analysis a power of 2 for a window bound is required.

We choose a strong MJO event on 16 December 1996

for our exemplification purpose. The RMM index is

2.05, corresponding to phase 5 (where the convection

center is over theMaritime Continent). Using the above

parameters, a straightforward application to the out-

going longwave radiation (OLR) in the tropical region

(averaged between 108S and 108N) immediately yields

an MJO window reconstruction (Fig. 5). From it, the

eastward propagation and its seasonal variation are

clearly seen. Likewise, velocity and temperature can be

reconstructed. Particularly, u;1,v;1, andT;1 have on the

zonal cross section an up-westward-tilting pattern, as

identified earlier on (e.g., Moncrieff 2004); see Fig. 6.

Shown in Fig. 7 are the vertical distributions of the ca-

nonical transfers to the MJO window averaged over the

tropical region (108S–108N) between 08 and 1808. From the

kinetic transfers, G0/1
K is on the whole positive, while G2/1

K

is negative. That is to say, GK is downscale. In contrast, its

potential energy counterpart tends to be more irregularly

distributed, and, besides, is one order smaller. Though this

is just for one particular day only, the long time mean also

has the trend. This is in opposite to that for themidlatitude

paradigm, where the canonical APE transfer is downscale

while the canonical KE transfer is upscale (Saltzman

1970). From the figure the transfer center is located in the

upper troposphere around 200hPa, in agreement with the

previous studies (e.g., Hsu et al. 2011).

To examine the horizontal distributions of instability

centers, in Fig. 8 we draw the maps of the canonical

transfers at 200 hPa. We see that they are mainly dis-

tributed between 1008 and 1408E—that is, the Maritime

Continent. This is, of course, in agreement with the

phase where MJO lies at that time.

We emphasize again that it is not our intention to study

the MJO dynamics here. We just pick for the purpose of

demonstration this example at a given instance. It is seen

that, through a straightforward application, one immedi-

ately obtains a bunch of maps of the multiscale energetics

that reflect the underlying internal dynamics, and these

energetics agree well with the previous studies. A detailed

study of MJO the intraseasonal mode requires a statistical

examination of the resulting energetics; we will see that

later in Lu et al. (2016, unpublished manuscript).

9. Conclusions and discussion

Multiscale energetics diagnostics are important in that

they provide an approach to the fundamental problems of

atmospheres and oceans such as mean flow–disturbances

interaction, instability, and disturbance growth, as

FIG. 5. The 32–64-day scale-window reconstruction for the 1997 OLR

anomaly (Wm22) in the tropical area (averaged over 108S–108N).
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identified in the national report of Lindzen and Farrell

(1987). Their importance is also seen in the potential

role that they may play in the major engineering

problems such as eddy transport parameterization

(e.g., Gent and McWilliams 1990; Greatbatch 1998;

Visbeck et al. 1997; Marshall and Adcroft 2010) and

turbulence and feedback closure (e.g., Jin 2010).

Based on the new analysis machinery, namely, mul-

tiscale window transform (MWT), which is capable

of orthogonally decomposing a function space into

a direct sum of several subspaces while retaining

the local information in the resulting transform

coefficients, we have given a comprehensive derivation

of the multiscale energetics for the atmosphere, with

respect to both the primitive equation model and

quasigeostrophic model. By taking advantage of the

nice properties of the MWT, an ‘‘atomic’’ reconstruction

of the fluxes on the multiscale windows allows for a

unique separation of the interscale transfer from the

nonlinearly intertwined energetics. The resulting transfer

bears a Lie bracket form, reminiscent of the Poisson

bracket in the Hamiltonian dynamics; for this reason, we

call it canonical transfer. A canonical transfer sums to

zero over scale windows, indicating that it is a mere

FIG. 6. The equatorialv5 dp/dt on 16Dec 1996 reconstructed on the 32–64-day scale window.Note the up-westward-tilting pattern east of

the Maritime Continent.

FIG. 7. Vertical distributions of G0/1
K , and G2/1

K , G0/1
A , and G2/1

A (all inm2 s23) averaged be-

tween 108S and 108N and 08 and 1808.
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redistribution of energy among the scale windows, with-

out generating or destroying energy as a whole.

The multiscale atmospheric kinetic energy (KE) and

available potential energy (APE) equations are thence

derived. By classification, a multiscale energetic cycle

comprises the following processes: KE transport, APE

transport, pressurework, buoyancy conversion, work done

by external forcing and diabatic and frictional processes in

the respective scale windows, and the interscale canonical

transfers of KE and APE, which have been shown to

correspond to the barotropic and baroclinic instabilities

(Liang and Robinson 2007). Note that a buoyancy con-

version takes place in an individual window only, bridging

the two types of energy—namely, KE and APE. It does

not involve the process among different scale windows

and, hence, basically is not related to instabilities, although

traditionally it has been used to diagnose baroclinic in-

stabilities. A brief application of the formalism is exem-

plified with the Madden–Julian oscillation.

Also derived are the multiscale KE and APE equa-

tions for quasigeostrophic flows and, for completeness,

those for oceanic circulations. It should be cautioned

that, since what we talk about are four-dimensional

energy distribution and evolution, the term ‘‘energy’’ in

this study is, in a strict sense, ‘‘energy density.’’ The

abuse of terminology will not cause confusion as it is

clear in the context.

It should bementioned that the definition of APE is still

an active arena of research; a recent review can be found in

Tailleux (2013). In the present formalism, APE is defined

as in Lorenz (1955), which takes a quadratic form. How-

ever, it has been argued that it is generally not quadratic, if

the 1D reference hydrostatic thermodynamic profile is

achieved by adiabatic rearrangement of the existing 3D

state (e.g., Holliday and McIntyre 1981; Winters et al.

1995;Winters andBarkan 2013). This raises an issue about

how to handleAPE in nonquadratic form in themultiscale

formalism. Recall that, in this study, central at the

FIG. 8. Horizontal distributions of G0/1
K , G2/1

K , G0/1
A , and G2/1

A (all inm2 s23) at 100 hPa.
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multiscale energy representation is the Parseval relation,

while the relation works only for quadratic properties.

For a nonquadratic APE, the problem may need to be

considered from a more fundamental point of view. We

will leave that to future discussions.

Notice that presented in this study is the energetics based

ona three-scalewindowdecomposition. It is straightforward

to extend the formalism to four, five, ormore scalewindows;

the resulting energy equations are the same in form. One

may equally reduce the number of windows to two.

We remark that there is a well-known apparatus in

achieving a two-scale decomposition in atmospheric

research—that is, decomposition through taking the

transformed Eulerian mean (Andrews and McIntyre

1976; McIntyre 1980; also see Plumb and Ferrari 2005;

Bühler 2009). Formalisms of two-scale energetics have

been established with the theory (e.g., Plumb 1983), but

how these formalisms may be related to this study has

yet to be carefully examined.

InLR05, there is also abrief touchonmultiscale enstrophy

analysis, which, together with its multiscale energetics coun-

terpart, makes ‘‘localized multiscale energy and vorticity

analysis,’’ orMS-EVA as called therein. Since themultiscale

enstrophy equation is closely related to an important concept

in dynamic meteorology—namely, the Eliassen–Palm flux

(Eliassen and Palm 1961; Bühler 2009; Vallis 2006), which
has been extensively employed inwave activity diagnosis and

certainly deserves a detailed study for its own sake (e.g.,

Marshall 1984; Plumb 1986; Rhines and Holland 1979;

Nakamura and Solomon 2010; Takaya 2001)—we will defer

it to another investigation in the near future.
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APPENDIX A

Glossary of Notation

= 3D gradient operator [5el(› /›l) 1
eu(› /›u)1 ep(› /›p)]

=h Horizontal gradient operator (horizontal

component of =)

v Velocity [5(u, y, v),v5dp/dt (atmosphere);

5(u, y, w) (ocean)]
vh Horizontal velocity [5(u, y)]

f Scaling function

p̂;- MWT of some property p at step n on

window -; dependence on n is sup-

pressed when no confusion arises

p;- Window --filtered p (multiscale window

reconstruction of p on window -)
p-

n Notationof somepropertyat stepnonwindow

-; n is suppressed when no confusion arises

T5T(p) Mean temperature profile (averaged over

the p plane and time)

T Departure from T

a Specific volume

F Geopotential function

Z Geopotential height (5F/g)

R Specific gas constant (J kg21K21)

cp Specific heat capacity of air for isobaric

processes (51.005 3 103 J kg21K21)

cy Specific heat capacity of air for isochoric

processes

f Coriolis parameter

b Meridional gradient of f

L Lapse rate (52›T/›z)

Ld Lapse rate of dry air (5g/cp)

a Radius of Earth

(l, u, r) Spherical coordinates

p Pressure coordinate

(x, y, z) Zonal arc length, meridional arc length,

and height measured from Earth’s sur-

face (z5r2 a); dx5 a cosudl, dy5 adu
(~x, ~y, ~z) Cartesian coordinates

i, j, k Unit vectors for the Cartesian coordinate

system

el, eu, ez Unit vectors for spherical coordinate system

el, eu, ep Unit vectors for the isobaric spherical co-

ordinate system

g Acceleration due to gravity

(hl, hu, hz) Lamé’s coefficients
r5 r(z) Stationary density profile (ocean)

r Density perturbation with r removed (ocean)

r0 Reference density (51025 kgm23 here)

(ocean)

N Buoyancy frequency (ocean) [5N(z) 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(g/r0)(›r/›z)

p
]

P Dynamic pressure; that is, pressure with

P(z)5P0 2
Ð z
0
rg dz removed (ocean)

c Premultiplier for available potential

energy f5g/[T(g/cp 2L)] (atmosphere);

5g2/r20N
2 (ocean)g

Q Flux

G Canonical transfer

A Available potential energy

K Kinetic energy

b Buoyancy conversion rate

Fh Friction/external forcing in horizontal direction
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Fz Friction/external forcing in vertical direction

Fp Friction/external forcing in p direction

c Streamfunction

vg Geostrophic velocity (5k3=hc)

Fr Rotational internal Froude number

« Rossby number (51/f0t0)

a‘ Measure of importance of advection to

local change (5U0t0/L0)

L Substantial differential operator with

respect to the geostrophic flow

[5› /›t1 vg � =h 5 (›/›t)1 J(c, �)]

APPENDIX B

Expansion of = � (vv) in Spherical Coordinates

To compute the canonical transfer [(46)], we are required to

evaluate explicitly= � (vvh) in the spherical coordinate system
(l, u, r). This material, which is often missing or appears in-

complete in textbooks, is hopefully of some use to researchers.

The coordinates (l, u, r) are connected with the

Cartesian coordinates (~x, ~y, ~z) as follows:

~x5 r cosu cosl , (B1)

~y5 r cosu sinl, and (B2)

~z5 r sinu . (B3)

Here the tilde is employed to avoid confusing with z,

which will be reserved for height measured from Earth’s

surface: z5 r2 a, with a being the radius of Earth. Be-

sides, in meteorology, dx and dy are usually reserved for

a cosudl and adu, respectively. From the position

vector x5 ~xi1 ~yj1 ~zk, it is easy to find the Lamé’s co-
efficients as follows (cf. Fig. B1):

h
l
5

				›x›l
				5 r cosu , (B4)

hu 5

				›x›u
				5 r, and (B5)

h
z
5

				›x›z
				5 1. (B6)

With the shallow-water approximation, r ’ a 5
constant. So

= � (vv)5= � [v(ue
l
1 yeu 1we

z
)]

5
1

a cosu

›[u(ue
l
1 yeu 1we

z
)]

›l
1

1

a cosu

›[y(ue
l
1 yeu 1we

z
) cosu]

›u
1

›[w(ue
l
1 yeu 1we

z
)]

›z
. (B7)

And, particularly,

= � (vv
h
)5= � [v(ue

l
1 yeu)]

5
1

a cosu

›[u(ue
l
1 yeu)]

›l
1

1

a cosu

›[y(ue
l
1 yeu) cosu]

›u
1

›[w(ue
l
1 yeu)]

›z
. (B8)

We need to evaluate ›el/›l, ›el/›u, etc.
There are several ways to achieve the evaluation.

One way is by directly taking the limit ›el/›l5
limDl/0(Del/Dl). Another way is to first connect

(el, eu, ez) with (i, j, k), then take the derivatives. One

may take advantage of the properties such as

e
l
� eu 5 10 ›e

l
� e

l
5 00 ›e

l
? e

l
.

From Fig. B1, it is easy to find that

e
l
52sinli1 coslj , (B9)

eu 52sinu cosli2 sinu sinlj1 cosuk, and (B10)

e
z
5 cosu cosli1 cosu sinlj1 sinuk . (B11)

Inverting, we get

FIG. B1. Spherical coordinate frame.
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i52cosl sinueu 1 cosl cosue
z
2 sinle

l
, (B12)

j52sinl sinueu 1 sinl cosue
z
1 cosle

l
, and (B13)

k5 cosueu 1 sinue
z
. (B14)

So

›e
l

›l
52cosli2 sinlj5 sinueu2 cosue

z
, (B15)

›e
l

›u
5 0, (B16)

›e
l

›z
5 0, (B17)

›eu
›l

5 sinu sinli2 sinu coslj52sinue
l
, (B18)

›eu
›u

52cosu cos li2 cosu sinlj2 sinuk52e
z
, (B19)

›eu
›z

5 0, (B20)

›e
z

›l
52cosu sinli1 cosu coslj5 cosue

l
, (B21)

›e
z

›u
52sinu cosli2 sinu sinlj1 cosuk5 eu , (B22)

and

›e
z

›z
5 0. (B23)

Also one may obtain

de
l

dt
5

u

a cosu
(eu sinu2 e

z
cosu) , (B24)

deu
dt

5
u tanu

a
e
l
2

y

a
e
z
, and (B25)

de
z

dt
5

u

a
e
l
1

y

a
e
z
. (B26)

With the above results, (B7) now can be expanded as

= � (vv)5 1

a cosu

�
›u2

›l
e
l
1

›uy

›l
eu 1

›uw

›l
e
z
1 u2›el

›l
1 uy

›eu
›l

1uw
›e

z

›l

�
1

1

a cosu

�
›(yu cosu)

›u
e
l
1

›(y2 cosu)
›u

eu 1
›(yw cosu)

›u
e
z
1yu cosu

›e
l

›u
1 y2 cosu

›eu
›u

1 yw cosu
›e

z

›u

�
1

�
›wu

›z
e
l
1

›wy

›z
eu 1

›w2

›z
e
z
1wu

›e
l

›z
1wy

›eu
›z

1w2
›e

z

›z

�
.

(B27)

Or,

= � (vv)5
�

1

a cosu

�
›u2

›l
2 uy sinu1 uw cosu1

›(yu cosu)
›u

�
1

›wu

›z

�
e
l

1

�
1

a cosu

�
›uy

›l
1 u2 sinu1

›(y2 cosu)
›u

1 yw cosu

�
1

›wy

›z

�
eu

1

�
1

a cosu

�
›uw

›l
2 u2 cosu1

›(yw cosu)
›u

2 y2 cosu

�
1

›w2

›z

�
e
z
. (B28)

One may check that, with the aid of the incompres-

sibility assumption

1

a cosu
›u

›l
1

1

a cosu
›y cosu

›u
1

›w

›z
5 0,

the above equation is equivalent to

�
u

a cosu
›u

›l
1

y

a

›u

›u
1w

›u

›z
2

uy

a
tanu1

uw

a

�
e
l

1

�
u

a cosu
›y

›l
1

u2

a
tanu1

y

a

›y

›u
1
yw

a
1w

›y

›z

�
eu

1

�
u

a cosu
›w

›l
1

y

a

›w

›u
1w

›w

›z
2

u2 1 y2

a

�
e
z
,
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which is precisely the advection part in the non-

approximated momentum equations in spherical co-

ordinates. Equation (B28) is thence verified.

As a particular case,

= � (vv
h
)5

1

a cosu

�
›u2

›l
e
l
1

›uy

›l
eu 1 u2›el

›l
1uy

›eu
›l

�
1

1

a cosu

�
›(yu cosu)

›u
e
l
1

›(y2 cosu)
›u

eu

1yu cosu
›e

l

›u
1 y2 cosu

›eu
›u

�
1

�
›wu

›z
e
l
1

›wy

›z
eu 1wu

›e
l

›z
1wy

›eu
›z

�
.

(B29)

Or,

= � (vv
h
)5

�
1

acosu

�
›u2

›l
2uy sinu1

›(yucosu)
›u

�
1
›wu

›z

�
e
l

1

�
1

acosu

�
›uy

›l
1u2 sinu1

›(y2 cosu)
›u

�
1
›wy

›z

�
eu

1

�
1

acosu
(2u2 cosu2y2 cosu)

�
e
z
.

(B30)

Correspondingly with the incompressibility assumption,

this is

�
u

a cosu
›u

›l
1

y

a

›u

›u
1w

›u

›z
2

uy

a
tanu

�
e
l

1

�
u

a cosu
›y

›l
1

u2

a
tanu1

y

a

›y

›u
1w

›y

›z

�
eu

1

�
2
u2 1 y2

a

�
e
z
.

APPENDIX C

Some Quasigeostrophic Results Used in the Text

Using the scaling in section 6, it is easy to have the

scaled inviscid governing equations [(71)–(74)] as fol-

lows (now all the variables in this appendix are un-

derstood as nondimensional):

«
›v

h

›t
1 «a

‘

�
v
h
� =

h
v
h
1w

›v
h

›z

�
1 fk3 v

h
52=

h
P ,

(C1)

r52
›P

›z
, (C2)

=
h
� v

h
1

›w

›z
5 0, and (C3)

F2
r «

›r

›t
1F2

r «a‘

�
v
h
� =

h
r1w

›r

›z

�
5N2w, (C4)

where f 5 11 «by.

Expanding P, w, vh, and r in the power of «, as that in

(96)–(99), it is easy to show that

[v
h
]
0
5 k3=[P]

0
, (C5)

[w]
0
5 0, and (C6)

[r]
0
52

›[P]
0

›z
(C7)

and

[w]
1
52

F2
r

N2
L
�
›[P]

0

›z

�
and (C8)

[v
h
]
1
5k3L ([v

h
]
0
)2by[v

h
]
0
1 k3=

h
[P]

1
, (C9)

where L is the substantial differential operator along

the geostrophic flow [vh]0: L 5 › /›t1 [vh]0 � =h. Equa-

tions (C5)–(C9) are to be used in the text in section 6.

As is conventional, let [P]0 [c. Following the deri-

vations in standard textbooks (e.g., McWilliams 2006),

we have

›

›t

�
=2
hc1

›

›z

�
F2
r

N2

›c

›z

��
1a

‘
J

�
c,

�
=2
hc1

›

›z

�
F2
r

N2

›c

›z

���
1b

›c

›x
5 0, (C10)

where J is the Jacobian operator. This is the very qua-

sigeostrophic equation for which we derive the multi-

scale energetics.
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