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A preliminary study of the causal structure in
fully developed near-wall turbulence

By X. San Liang† AND A. Lozano-Durán

Despite the huge amount of information provided by direct numerical simulations of
turbulent flows, the underlying dynamics remains elusive even in the simplest and most
canonical configurations. An important observation in nonlinear dynamical systems in
general, and turbulent flows in particular, is that, as time goes by, the correlation between
two events may be lost and/or re-emerge. This raises a crucial issue, i.e., causality, which
has been overlooked in turbulence research. Using a newly developed rigorous causality
analysis, we have examined the causal structure between the streaks and rolls in the
logarithmic layer of a plane turbulent channel flow. The velocity streaks are represented
by the first proper orthogonal modes of the streamwise velocity, while the rolls are defined
by the wall-normal and spanwise velocities. It is found that the streak-roll regeneration
cycle may be seen as a combination of two subcycles: one between the collection of
unbroken streaks and the wall-normal velocity, another between the spanwise velocity
and the meandering streaks. Both are mutually causal. These subcycles are connected
through the interaction between the wall-normal and spanwise velocities.

1. Introduction

Turbulence is an important nonlinear dynamical phenomenon and one of the most
difficult problems in classical physics; however, it has not been systematically investigated
from the point of view of causality, which makes a crucial issue for nonlinear systems.
One reason may be attribted to the lack of appropriate research tools. To date, the
only attempt to study causality in turbulence is the conference paper by Tissot et al.
(2014), where the so-called Granger causality is used (Granger 1969). In this study, we
will employ a newly developed rigorous causality analysis to investigate the interaction
between the well-observed rolls and streaks in the logarithmic layer of fully developed
wall-bounded turbulence.

Streamwise rolls and streaks are ubiquitous in wall-shear flows. Ever since the exper-
iment by Klebanoff et al. (1962) and the discovery of sublayer streaks and ejections
by Kline et al. (1967), among others, the roll-streak structure has attracted enormous
interest within the fluid mechanics community. The spatially and temporally varying
structure is generally believed to play an important role in maintaining the turbulence
in shear flows (e.g., Kim et al. 1971; Jiménez & Moin 1991; Hamilton et al. 1995; Wal-
effe 1997; Schoppa & Hussain 2002), and to serve as a vehicle carrying the turbulence
(cf. Jiménez 2013). Most analyses focus on the buffer layer where the streaks and rolls
(vortices in this case) are essentially one-scale objects and the analysis is simpler. Farther
from the wall, streaks and rolls persist but their internal Reynolds numbers are higher,
making their characterization and understanding a more challenging task.

We will center our study in the logarithmic layer of a turbulent channel flow. A
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paramount question that follows is how rolls and streaks are generated in a self-sustaining
way. Although it is widely agreed that in both the buffer and logarithmic layers the
streaks and rolls are involved in a regeneration cycle, many different mechanisms have
been proposed derived from simplified scenarios. In the buffer layer, it has been hypoth-
esized that streamwise vortices near the wall may collect the fluid from the inner region
where the flow is very slow and organize it into filaments (see Panton 2001); streaks
may be created by the wall-normal advection of the streamwise velocity by the vortices
(cf. Jiménez 2013). The streaks, on the other hand, may spawn formation of the rolls
through losing stability (Schoppa & Hussain 2002); and the instability includes the nor-
mal hydrodynamic instability, stochastic structural instability (Farrell & Ioannou 2012),
among others. A similar but more disorganized scenario is believed to take place in the
logarithmic layer, with the Orr’s mechanism playing an important role in the formation
of the streaks (Jiménez 2015).

The different mechanisms, each capable of leading to the turbulence structure as ex-
pected, are rooted in theoretical or conceptual arguments. Whether nature picks one,
more than one, or none, is in fact unclear. In the following, the causal structure analysis
is expected to help in clarifying the drives and consequences. Our study is completely
data-driven and independent of conceptual models.

The paper is organized as follows. First, we give a brief introduction of the state-of-
the-art of causality analysis (Section 2), and then the dataset (Section 3). The streak-roll
interaction and the resulting causal structure are presented in Section 4. Finally, the
study is summarized in Section 5.

2. Quantitative causality analysis

Causal inference is an important subject in different scientific disciplines. It is also
a very challenging problem. During the past decades, many empirical or half-empirical
formalisms have been proposed for specific purposes in their respective contexts (for
references, see Liang 2014). Recently, it is found that causality, which traditionally has
been taken as a concept in statistics (e.g., Granger 1969), is actually a real physical
notion, and, therefore, causality analysis can be put on a rigorous footing, rather than
formulated as a statistical hypothesis test (like the renowned Granger causality test).
With this faith, Liang (2014) was able to establish a rigorous and quantitative formalism
to address the causal inference challenge (cf. Liang 2014, hereafter L14; Liang 2015).

In the L14 formalism, causality is measured as the rate of information flow or transfer
from one event to another. The logical association of information flow with causality has
been gradually and universally recognized after more than three decades of research. For
a historical account, see Liang (2016). As a start, consider a stochastic system in the
form

dX1

dt
= F1(X1, X2, t) + b11Ẇ1 + b12Ẇ2, (2.1)

dX2

dt
= F2(X1, X2, t) + b21Ẇ1 + b22Ẇ2, (2.2)

where Ẇ1 and Ẇ2 are independent white noises, and F1 and F2 arbitrary differentiable
nonlinear functions of (X1, X2). With respect to the system, the major results can be
summarized in the following theorems.

Theorem 2.1. (Liang, 2008)
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For the dynamical system Eqs. (2.1)-(2.2), the rate of information (in terms of entropy
transfer) flowing from X2 to X1 is

T2→1 = −E

[

1

ρ1

∂(F1ρ1)

∂x1

]

+
1

2
E

[

1

ρ1

∂2(b2
11 + b2

12)ρ1

∂x2
1

]

, (2.3)

where E stands for mathematical expectation, and ρ1 = ρ1(x1) is the marginal probability
density of X1.

Theorem 2.2. Principle of nil causality (Liang, 2008)
If in the system Eqs. (2.1)-(2.2), F1, b11, and b12 are independent of X2, then T2→1 = 0.

In causality analysis, perhaps the only observational fact that can be stated in a
quantitative way is the following nil causality principle:

If the evolution of a variable, say X1, is independent of another one, X2, then the
causality from X2 to X1 is zero.

However, it has been shown that the previous empirical causality analyses, including the
Granger causality, fail to verify this principle in a wide range of situations (for references,
see Liang 2016). In the L14 formalism, however, this is stated in a proven theorem.

In many practical applications, Eq. (2.3) becomes infeasible to evaluate, even if the
equations of motion of the system in question are well known. This is the case of turbu-
lent flows involving millions of degrees of freedom. However, given two time series, the
information flows can be approximated through maximum likelihood estimation.

Theorem 2.3. (Liang, 2014)
Given time series X1 and X2, with a linear model the maximum likelihood estimator
(MLE) of the rate of information flowing from X2 to X1 is

T2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12

. (2.4)

Here C = (Cij) is the sample covariance matrix between time series X1 and X2, and
Ci,dj the sample covariance between Xi and a series derived from Xj using Euler forward

differencing scheme: Ẋj,n = (Xj,n+1 − Xj,n)/∆t. The units are in nats per unit time.

Note that in Eq. (2.4) T is actually the MLE of the information flow rate and, strictly,
should bear a hat. The abuse of notation here should not cause confusion since we will
rely on Eq. (2.4) only to infer causality henceforth. Specifically, Eq. (2.4) will be used
to quantify the causality from X2 to X1: When |T2→1| > 0, X2 is the cause of X1; if
T2→1 = 0, X2 is not causal.

Note that Eq. (2.4) demonstrates explicitly that causation implies correlation, but
not vice versa, resolving the long-standing philosophical debate over causation versus
correlation (Liang 2014).

The formalism has proven successful in many well-known, low-dimensional chaotic
systems, where the causal relation between time series can be accurately recovered using
the concise formula in Eq. (2.4). The power of Eq. (2.4) has also been validated in many
remarkably successful real-world applications, among which are the clarification of the
causality between CO2 and global warming (Stips et al. 2016), and the unraveling of
a period of unusual causal relation between IBM and GE from the time series of their
respective stock prices (Liang 2015).
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Figure 1. Instantaneous, (a) streamwise; (b) wall-normal; and (c) spanwise fluctuating
velocities at y = 0.25h. Velocities in wall units.

3. Dataset

The data are obtained from direct numerical simulation of a plane turbulent channel
flow with two periodic directions and no-slip condition at the wall. In the following, the
streamwise, wall-normal and spanwise directions are denoted by x, y, and z, respectively,
and the corresponding velocity components by u, v, and w. The friction Reynolds number
of the simulation is Reτ = uτh/ν = 934, where uτ is the friction velocity, h the channel
half-height, and ν the kinematic viscosity (Pope 2000).

The incompressible Navier-Stokes equations are integrated with staggered second-order
central finite differences as described in Orlandi 2000. Time advancement is achieved by
a third-order Runge-Kutta scheme, combined with the fractional-step procedure. The
streamwise and spanwise resolutions are ∆x+ = 6.5 and ∆z+ = 3.3, respectively, where
the superscript + denotes wall units defined in terms of the friction velocity and the
kinematic viscosity. The minimum and maximum wall-normal resolutions are ∆y+

min =
0.2 and ∆y+

max = 6.1. The simulation was run for 140 eddy turnovers (after transients),
and the velocity fields were stored every 25 wall units to build a time-resolved dataset.

The length, height and width of the computational domain are Lx = π/2h, Ly = 2h
and Lz = π/4h, respectively. These dimensions correspond to a minimal box simulation
and are considered to be sufficient for isolating the relevant dynamical structures involved
in the bursting process in the logarithmic layer (Jiménez 2012). Minimal simulation boxes
have demonstrated their ability to reproduce statistics of full-size turbulence computed in
much larger domains. Flores & Jiménez (2010) showed that turbulence remains “healthy”
roughly below y ≈ 0.3Lz, corresponding in our case to y ≈ 0.25h, that is the height chosen
to analyze the causality transfer between rolls and streaks in the present study.

Figure 1 shows instantaneous snapshots of the three velocity components. The streaky
elongated nature of u is clearly observed along the streamwise direction, as opposed to
the shorter structure of v and w. Figure 1 also highlights the finding that just a few
velocity eddies are contained and isolated in the computational domain, enabling the
causality analysis between individual objects.
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4. Results: causal structure in the streak-roll regeneration cycle

The study of coherent structures in turbulence assumes that there is a set of coherent
regions in the flow that are important enough to explain the dynamics of the flow as a
whole. Of course, defining those regions is not trivial, and their relevance to the rest of
the flow has to be proved. Some promising candidates are the streamwise streaks and
rolls, which play an important role in near-wall turbulence production and maintenance.

The most interesting results are not the kinematic description of the structures in
individual flow realizations, but rather the elucidation of how they relate to each other,
and how and why they evolve in time. Such dynamical studies have been difficult in the
past, and time-resolved information of three-dimensional structures has only recently
become available (Lozano-Durán 2012, 2014).

In this first analysis, we define rolls as v–w motions, while streaks are characterized
by low POD modes (Lumley 1967) of the streamwise velocity fluctuation, as described
in the section below.

4.1. Representation of the streaks

POD analysis is useful in this context for efficiently representing a spatio-temporal field in
terms of orthogonal modes, with energy (variance) maximized toward the lowest modes.
In the present study, we perform POD analysis of the time-resolved field u(x, h/4, z, t).
The resulting POD modes have structures as shown in Figure 2. Due to the invariance
of the solution under translations in wall-parallel planes, the modes appear in pairs with
a π/2-phase difference, equivalent to the sines and cosines in the Fourier decomposition.
Taking advantage of these flow symmetries, we classify the u modes into two categories,
each representative of a different dynamical state of the streak. Straight modes (Figures
2(a,b)) are denoted by us and represent the stable configuration of the streak. Meandering
modes (Figures 2(c,d,e,f)) are represented by um and used as surrogates for the unstable
breakdown of the streaks.

4.2. Absolute causal structure

We investigate the causalities between the time series of the two different streak configu-
rations, us and um, and those of v and w. Specifically, we compute the information flow
rates from us(x, z, t) and um(x, z, t) to v(x, z, t) and w(x, z, t) using Eq. (2.4) at each
(x, z) point. This yields a spatial distribution of causality between the corresponding u
state and v or w.

Figure 3 shows the absolute information flow rates between v and the streak. The
absolute causality is almost one way, i.e., from the streaks to v. And, in particular, the
one-way flow is mostly between the unbroken streaks us and v. The meandering mode
um is also found to be causal but weaker in strength. Note that reverse causality flows
from v to the streaks exist and, though very weak, they have all passed the significance
test at a 95% confidence level.

The causality between u and w (Figure 4) exhibits a different structure. As in Figure
3, the information flow rates between w and the two u states are drawn. In contrast to
the previous case, us is barely causal with w. The information flows between um and w
are mutual, though those from um still dominate.

From the previous results, we may conclude that during the streak-roll interaction, the
information flow is essentially one way from the collection of unbroken streaks to v, and
that the regeneration of the streaks occurs through a secondary interaction between w
and u, which is mutually causal.
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Figure 2. Streamwise velocity POD modes used for causal analysis.

4.3. Normalized causal structure

The above analysis provides the absolute information flowing between the structures.
While this allows a comparison of the influences in two opposite directions, the resulting
flow rates do not necessarily reflect the relative importance accounting for the formation
of the structures. In some extreme cases, a tiny information flow in absolute value may
turn out to dominate the entropy balance when other influences, e.g., noise, are negligible
(see Liang (2015)). Considering that the rolls and streaks are on different scales, and hence
their entropy balances could be quite different, it is necessary to calculate the relative or
normalized causality.

Unlike that of covariance, the normalization of causality is not straightforward. Fol-
lowing the discussion from Section 2, the marginal entropy rate of a signal X1 may be
decomposed as (Liang 2015)

dH1

dt
= T2→1 +

dH∗

1

dt
+

dHnoise
1

dt
, (4.1)

where the first term is the transfer of entropy from signal X2 to X1, the second term is
the self-induced change of entropy, and the third is the change due to stochastic effects.
Therefore, we may choose
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as the normalizer and define τ2→1 = T2→1/Z2→1. This way if τ2→1 = 1, the variation of
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Figure 3. Absolute causal information flow rates (in nats per time step) between straight and
meandering streaks and the wall-normal velocity.

Figure 4. Absolute causal information flow rates (in nats per time step) between straight and
meandering streaks and the spanwise velocity.

H1 is 100% due to the information flow from X2; if τ2→1 is approximately 0, X2 is not
the cause. Therefore, τ2→1 assesses the importance of the influence of X2 on X1 relative
to other processes.

As mentioned in the preceding subsection, the absolute information flows from v to the
us and um, though very weak, are actually all significant at a 95% level. When normalized,
the values are significantly changed. Figure 5 shows that the relative information flow
from v to the us dominates, reaching a percentage as high as 20%, while its reverse
counterpart has a maximal value of only 10%. This is because, compared to us, the v
field is much more disorganized, and a large fraction of its entropy balance comes from
noise. So, even though the information flowing from us is very large, its relative weight
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Figure 5. Normalized causal information flow rates between straight and meandering streaks
and wall-normal velocity.

Figure 6. Normalized causal information flow rates between straight and meandering streaks
and spanwise velocity.

is no longer relevant. In contrast, the us is much more coherent (less noisy), and the
information flow from v, though weak, becomes significant since the signal-to-noise ratio
is large.

The normalized information flows between w and u are also affected in magnitude.
Though still mutually causal, the normalized flows from w become more significant, as
shown in Figure 6.

In terms of normalized information flow, the conclusions are qualitatively similar to
those from the previous section. The streaks and rolls are mutually causal. Specifically,
the dominant causality is between the straight configuration of the streak and v, and the
secondary causality between meandering streaks and w. Although not shown because of



Causal structure in near-wall turbulence 241

Figure 7. Sketch of the normalized information flow in the streak-roll regeneration cycle. In-
formation is extracted from Figures 5 and 6, and from the normalized causal analysis between
v and w (not shown). Subcycles are represented in blue and red colors. Solid and dashed arrows
represent strong and weak normalized causality flows.

space restriction, the normalized causalities between the first POD modes of v and w
turn out to be close to 15% in both directions. Note that the normalization of a flow
from us to v is with respect to the entropy balance of v, which may be different from
the balance of us, as shown above. Hence, the resulting normalized causalities cannot be
compared; the comparison can be made only between absolute causalities.

5. Summary

Despite the extensive information provided by direct numerical simulation of turbu-
lent flows, how causality emerges and is distributed has been overlooked in turbulence
research. One reason may be due to the lack of appropriate research tools in the past.
Recently, a rigorous and quantitative causality analysis was established for unraveling
the complex causal structure and topology underlying the accumulating large datasets
(Liang 2014; 2016). In this formalism, causality is measured by the rate of information
flowing from one event to another. When two time series are given, the causality from
one series, say X1, to another, say X2, can be estimated in a maximal likelihood sense.
If the causality is nonzero, then X2 is causal to X1. A corollary is that causation implies
correlation, but not vice versa.

The above formalism has been applied with remarkable success to many real-world
problems. In this study, we have examined the causal structure between the streamwise
rolls and streaks in the logarithmic layer of a turbulent channel flow. The proper or-
thogonal decomposition was first performed for the streamwise velocity u; the resulting
time series for the low modes are used as surrogates for two different configurations of
the streaks, that is, the straight and meandering states. Causality analysis was then
conducted between these series with the time history of v and w at each spatial point,
providing the distribution of information flow between the streaks at two different states
and rolls.

Our results show that the streak-roll regeneration cycle may be seen as a combination
of two subcycles. In the dominant subcycle, the causality flows between the straight
configuration of the streak and v. The secondary interactive relation is much weaker
(but still significant) and occurs between w and the meandering streak. In each subcycle
the elements are mutually causal. The results are sketched in Figure 7.

In the above scenario, the most relevant interactions may be understood in the frame
of simplified physical mechanisms. The causality flow from the meandering streaks to v is
consistent with previous analysis where the former are most unstable to sinuous normal
modal perturbations (e.g., Schoppa & Hussain 2002), while the Orr Mechanism (Orr
1907) is a reasonable candidate for the information transfer from the wall-normal velocity
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to streaks in a straight configuration. The coupling between spanwise and wall-normal
velocities may be anticipated by the effect of the pressure enforcing incompressibility.

It is nevertheless striking that the normalized causalities never rise above 20%, im-
plying a strong influence of the self-induced causality and noise in the time evolution
of the streaks and rolls. A more detailed causal map may be obtained by calculating
the information flow as a function of time. This and other unresolved questions will be
addressed in future investigations.
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