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Abstract

Guided by the classical wind-driven circulation theory, there has long been an effort to seek for a western boundary current in the South 
China Sea. In this study we show that the seasonally varying monsoon wind stress curl may weaken such a current or even prevent it from 

being generated.
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Introduction
The South China Sea (SCS) is the largest marginal sea in the 

Western Pacific Ocean. Straddling one of the world’s busiest 
shipping routes, it is no doubt of enormous economic value. The 
surrounding countries, namely, China, Vietnam, the Philippines, 
Malaysia, and Brunei, have long competing territorial and 
jurisdictional claims, particularly over rights to exploit the 
region’s vast reserves of oil and gas. The risk of armed clash is 
significant, making it a military hotspot in the world.

From a scientific viewpoint of oceanography, this region is 
also of enormous interest. Considering its geometry (a semien 
closed domain) and the fact that the upper ocean circulation, 
particularly the southern SCS circulation, is mainly forced by 
the wind stress curl [1-6], it is temptating to make SCS a mini 
analogy of the world ocean. If this is true, SCS would provide an 
ideal test bed for the wind-driven circulation theory, one of the 
most successful theories in physical oceanography-Anyhow, the 
world ocean is too big to survey, while SCS has the right size.

In a wind-driven world ocean circulation, the most prominent 
feature is no doubt the existence of a western boundary current, 
just like Kuroshio in the Pacific and Gulf Stream in the Atlantic [7]. 
So there has also been a long effect in search for such a boundary 
current in the SCS; in fact this has been a major objective for 
many SCS survey projects since decades ago. Indeed, the idea 
is intriguing. However, it is doubtful that a western boundary 
current in the normal sense should exist, considering that the 
circulation is not steadily forced, but driven by the monsoon 
wind with an annual variability. The temporally varying wind  

 
stress curl may drive a circulation quite different from that 
forced by a steady one, as long studied by, say, Pedlosky [8]. In 
the following we illustrate the problem with a barotropic quasi-
geostrophic (QG) model, the model which Stommel [9] used in 
his renowned wind-driven circulation theory.

Analysis with an Idealized Quasi-Geostrophic 
Model 

Consider a QG model with a Newtonian friction:
2
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The symbols are conventional. This type of friction was 
originally considered by Stommel [9]. For simplicity, consider, as 
a first step, a rectangular domain with a flat bottom. Different 
from Stommel’s model, now the forcing on the right hand side 
is time varying:

1( ) coszcurl t F tτ ω=                                         ……………2

where F1 is the amplitude of the variation and ω the angular 
frequency. This is used to represent the seasonal variability of 
the monsoon wind forcing.

To see how a periodic wind stress forcing excites the SCS, 
look at how the linear response may be. 

The governing equation (1) with the nonlinear terms taken 
out becomes
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                     ……………………….3
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Since 1 1( ) cos Re{ }i t
zcurl t F t F e ωτ ω= = , where 1i = −   i = −1 and Re 

signifies taking the real part. The solution then can be sought in 
the form

                              Re{ }i te ωψ φ=                ………..4

where 1 2iφ φ φ= +  . Substitution back to (3) gives
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These, together with the vanishing boundary conditions for 
φ1 and φ2 (φ1 = φ2 = 0 at the boundaries), form a set of Poisson 
equations. The final solution of ψ is, therefore,

1 2 1 2Re{( )(cos sin )} cos sini t i t t tψ φ φ ω ω φ ω φ ω= + + = −         …………..7

The equation set (5)-(6) can be solved with series expansion. 
But before moving on, it is beneficial to examine some special 
cases:

i)	 ω = 0. This corresponds to the steady case. Eq. (6) has 
only a trivial solution, i.e., φ2 = 0, considering the vanishing 
boundary conditions and the zero forcing. Eq. (5) is simply the 
linear Stommel model equa-tion; the solution is the well known 
pattern with a strong western boundary current. 

ii)	 γ = 0. In this case, the two equations can be decoupled. 
For example, φ2 satisfies the following equation:  

2
2 2 2 2
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φω φ β ∂

∇ + =
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which gives a solution without westward intensification. Similar 
solution appears with φ1. 

iii)	 In the classical Stommel model, the western boundary 
current results from the β-effect and a very small but non 
vanishing γ. In the present case, as one can see from (5) and 
(6), ω functions like γ, though not exactly because these two 
equations are coupled. So when ω is large, it is expected that 
the westward intensification may be suppressed. We now check 
whether this is true.

Figure 1: φ1  and φ2  for ω = 0.05, γ = 0.02.

Figure 2: φ1  and φ2  for ω = 0.5, γ = 0.02.

Let the β-effect balance the wind stress curl and take β=F1=1. 
Figure 1 shows the resulting φ1 and φ2 with γ= 0.02, ω=0.05. This 
is a solution with westward intensification and, hence, ψ = φ1 cos 
ωt -φ2 sin ωt must also be so. However, as ω is increased, the 
corresponding φ1 and φ2 are drastically altered. Figure 2 shows 
the case with ω=0.5. Observe that φ2 is now nearly symmetric 
in x, while φ1 even shows some sign of a weak eastern boundary 
current. The corresponding ψ is drawn in 3. As one can see, 
the western boundary current is greatly weakened and may 
disappear. Moreover, at ωt =0.2π, 1.2π, etc., the circulation even 
shows some sign of intensification toward the eastern boundary.

So the normalized ω will determine the pattern of the 
circulation pattern. We now give it an estimation. The SCS is 
located around a latitude at 15° N which yields a typical Coriolis 
parameter f0 ≈ 4 × 10-5 1/s and its meridional gradient β0≈2.2 × 
10-11 1/sm. Choose a length scale L=500km. The time scale T may 
be determined either by the Ross by wave celerity c∼β0/(2π/L)2 
∼0.14m/s. or by the advection speed U, which is estimated to be 
0.2m/s [10]. So T∼L/U∼30 days or L/c ∼ 40 days. Normalized 
by these estimated T’s, the period of 365 days is about 12 and 
9, yielding an ω=2π/12∼0.51 and 0.69, respectively. The stream 
function is similar to that as shown in Figure 3. If L is chosen to 
be 1000km, ω becomes much bigger, resulting a circulation with 
almost no sign of westward intensification [11].

Figure 3: ψ for ω = 0.5, γ = 0.02.
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Conclusion and Discussion 
To summarize, with a seasonally varying monsoon wind 

stress curl, the western boundary current may be greatly 
weakened or even completely suppressed, provided that the 
wind frequency is large enough. In the SCS, there could even 
be instants with a sign of weak intensification in the eastern 
boundary.

The above treatment did not consider the case of a wind 
stress curl with a nonzero mean, and the case with a forcing 
asymmetric in time. But the argument that the temporally 
varying monsoon wind will weaken the western boundary 
current still holds. Also ignored is the unique topography in the 
SCS; the strong topographic beta effect may cause the circulation 
intensified toward the east near the southern boundary of the 
basin.

Other factors that may determine the SCS circulation 
pattern include baroclinicity, domain geometry, wind stress in 
homogeneity, etc., which, of course, are not within the scope of 
this brief study. Here the take-home message is: if no western 
boundary current appears, it is not a surprise; if there is such 
a current, the classical theory of steady wind-driven circulation 
may not be appropriate for its explanation.
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