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Abstract: In this paper, we present a comparison between several algorithms for oil spill classifications
using fully and compact polarimetric SAR images. Oil spill is considered as one of the most significant
sources of marine pollution. As a major difficulty of SAR-based oil spill detection algorithms is the
classification between mineral and biogenic oil, we focus on quantitatively analyzing and comparing
fully and compact polarimetric satellite synthetic aperture radar (SAR) modes to detect hydrocarbon
slicks over the sea surface, discriminating them from weak-damping surfactants, such as biogenic
slicks. The experiment was conducted on quad-pol SAR data acquired during the Norwegian
oil-on-water experiment in 2011. A universal procedure was used to extract the features from
quad-, dual- and compact polarimetric SAR modes to rank different polarimetric SAR modes and
common supervised classifiers. Among all the dual- and compact polarimetric SAR modes, the π/2
mode has the best performance. The best supervised classifiers vary and depended on whether
sufficient polarimetric information can be obtained in each polarimetric mode. We also analyzed
the influence of the number of polarimetric parameters considered as inputs for the supervised
classifiers, onto the detection/discrimination performance. We discovered that a feature set with
four features is sufficient for most polarimetric feature-based oil spill classifications. Moreover,
dimension reduction algorithms, including principle component analysis (PCA) and the local linear
embedding (LLE) algorithm, were employed to learn low dimensional and distinctive information
from quad-polarimetric SAR features. The performance of the new feature sets has comparable
performance in oil spill classification.

Keywords: oil spill; SAR data; compact polarimetric mode; image classification; feature selection

1. Introduction

Oil spill is one of the most significant sources of marine pollution. In recent years, a series of
accidents continually took place and threatened the marine environment. In April 2010, during the
Deepwater Horizon (DWH) accident, approximately 780,000 m3 of oil, methane or other fluids were
released into the Gulf of Mexico. In 2011, approximately 700 barrels of crude oil were leaked into
the Bohai Sea, and about 2500 barrels of mineral oil-based mud became deposited on the seabed.
In December 2013, during an accident caused by a broken oil pipe, crude oil leaked into the coastal area
of Qingdao, Shandong province, and covered approximately 1000 m2 of the sea surface. In addition, a
large proportion of oil spills are caused every year by deliberate discharges from tankers or cargos, for
the reason that there are still vessels that secretly clean their tanks or engine before entering the harbor.
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These accidents and illegal acts cause damage to the coastal ecosystem, emphasizing the importance of
detecting oil spills in their early stages.

Although remote sensing with optical sensors can be used in oil spill detection, they are
unavoidably restricted by weather and light conditions. Therefore, satellite synthetic aperture radar
(SAR) data from ERS-1/2 (European Remote Sensing Satellites), ENVISAT (Environmental Satellite),
ALOS (Advanced Land Observing Satellite), RADARSAT-1/2 and TerraSAR-X have been widely used
to detect and monitor oil spills [1–8] due to the large spatial coverage, all-weather conditions and
imaging capability during day-night times [9]. In addition, airborne SAR sensors, such as Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) developed by JPL at L-band and E-SAR (developed
by DLR), have proven their potential for scientific research on ocean or land [10,11].

In SAR images, the detection of oil slick on the sea surface relies on the detection/quantification
of its attenuation of Bragg scattering on the sea surface. When Bragg scattering happens, the signals
from different sea surface facets interfere with each other. Moreover, according to the composite sea
surface model, the roughness of the sea surface can be seen as small-scale capillary waves (contributing
to Bragg scattering) superimposed on large-scale gravity waves. An illustration of this model can be
seen in Figure 1. The sea surface of the oil-covered region appears smoother than its surrounding
area. This is because the Bragg scattering of these areas is suppressed by the presence of hydrocarbons.
However, the main backscatter from the sea surface is contributed by Bragg scattering. As a result, in
SAR images the oil slick-covered area can usually be detected as a very dark (low backscattered) area.
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In SAR images, the backscattered signal from oil spill is very similar to that from other ocean
phenomena called “look-alikes” [1]. In recent years it has been demonstrated by theoretical and
experimental studies the benefit of the polarimetric SAR paradigm, which explore the polarimetric
SAR measurements and a proper electromagnetic modelling to distinguish light-damping surfactants
from heavy-damping ones. This can be exploited as one case to sort out most of the look-alikes that
are typical, such as biogenic films (slicks that are produced by marine organisms, such as fishes, algae,
etc.), which normally cause very little harm to the marine environment [12,13].

The feasibility of polarimetric SAR-based oil spill classifications relies on the fact that the
polarimetric mechanisms for oil-free and oil-covered sea surface are largely different [14]. Before the
availability of polarimetric observations, hydrocarbons and biogenic slicks were difficult to distinguish
because they damped the short gravity-capillary waves with almost the same strength [15]. However,
based on different polarimetric scattering behaviors, hydrocarbons and biogenic slicks can now be
better distinguished: for oil-covered areas, Bragg scattering is largely suppressed, and high polarimetric
entropy can be documented. In the case of a biogenic slick, Bragg scattering is still dominant, but with
a lower intensity. Thus, similar polarimetric behaviors as those of oil-free areas should be expected in
the presence of biogenic films [3].
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Despite being helpful to oil spill classifications, fully (or quad-) polarimetric SAR is facing the
challenges of its system complexity and reduced swath width caused by the doubled pulse repetition
frequency (PRF). To overcome this problem, dual polarimetric SAR systems, which transmit a single
polarization signal, are often considered [16]. However, traditional dual polarimetric SAR systems
transmitting only horizontal or vertical polarized signals have a limitation when acquiring the complete
polarimetric behavior of selected targets.

Compared with conventional dual-polarimetric SAR modes, compact polarimetric (CP) SAR
systems have higher sensitivity to the polarimetric behavior of some ground targets. Similarly, in
CP SAR modes, the radar transmits only a linear combination of horizontal and vertical (π/4) or
circularly (π/2, also called CTLR) polarized signals and linearly receives both horizontal and vertical
polarizations. As a result, compact polarimetric SAR modes can be considered as special kinds of
dual polarimetric SAR modes, and vice versa. Based on a general formalism of dual and compact
polarimetric SAR data, a unified framework was proposed to analyze different CP SAR modes and its
feature products [17].

Since the 2000s, CP SAR has become a new research trend [16,18,19]. In the years following the
development of this technique, most studies focused on the applications of land monitoring, e.g.,
biomass and soil moisture estimation [20]. Recently, it began to be considered in maritime surveillance
applications [21–23].

In data received via CP SAR modes, Stokes parameters and covariance matrices can be calculated
from the measurement vector of SAR data, and further polarimetric analysis can be employed [24].
Some important polarimetric parameters, such as the degree of polarization (DoP), relative phase,
entropy, anisotropy and α, can also be derived [22,25,26]. It is noted that the processing method and
definitions of some parameters for CP SAR data, in the process of calibration, decomposition and
classification, can be different.

Some previous studies explored the possibility of taking advantage of dual- and compact
polarimetric SAR data to classify oil spills and biogenic slicks [27–29]. However, there are seldom
quantitative comparisons of different polarimetric SAR modes, and their performance for actual oil
spill classification applications. One important benefit of Pol-SAR paradigm is its robustness, i.e.,
it successfully works with airborne and spaceborne SARs and for different frequencies. Due to the
fine classification capability of polarimetric features, polarimetric SAR-based methods may work on
a wider range of sea status (surface wind and currents). However, because of the complexity of sea
surface polarimetric scattering mechanisms, it is unrealistic to consider using any single characteristic
to distinguish a variety of kinds of oil spills under different conditions. As a result, a synthetic
and proper use of the polarimetric characteristics is the key to the accurate detection and successful
interpretation of oil slicks. Moreover, the optimum compact polarimetric SAR mode varies with the
different scattering behavior of the targets and also depends on specific classification tasks. Hence, in
this study, we compare the oil spill detection using quad-, dual- and compact polarimetric features
using supervised oil spill classifications. The study mainly concentrated on: (a) investigating the
feature selection from quad- and compact polarimetric SAR data; (b) testing the performance of these
features using several supervised classification algorithms, and (c) comparing SAR data from these
modes to achieve marine oil spill classifications.

2. Methods

2.1. Quad-Polarimetric SAR Mode

For quad-pol SAR data, the 2 × 2 scattering matrix is measured on the traditional linearly
horizontal and vertical bases, which can be described by [30]:

S =

(
SHH SHV
SVH SVV

)
(1)
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where the subscript H and V describes the transmitted and received polarization, respectively, with H
denoting horizontal and V denoting vertical directions. For the monostatic case, the reciprocity always
holds, which means that the two cross-polarized terms are identical, i.e., SHV = SVH.

The covariance matrix can be derived by:

C =


〈
S2

HH
〉 〈√

2SHHS∗HV

〉 〈
SHHS∗VV

〉〈√
2SHVS∗HH

〉 〈
2S2

HV
〉 〈√

2SHVS∗VV

〉
〈SVVS∗HH〉

〈√
2SVVS∗HV

〉 〈
S2

VV
〉

 (2)

where * is the symbol of conjugate and “< >” stands for multilook by using an averaging window
(5 × 5 in this study). This 5 × 5 averaging window is important to obtain the statistical property of the
compound target’s polarization status and reduce the effect of speckle noise.

2.2. Feature Extraction from Quad-Polarimetric SAR Data

2.2.1. Single Polarimetric Intensity

The intensity of co-polarized channel is largely used in single polarimetric SAR-based oil spill
detection algorithms. In this study, S2

VV is considered as one of the features for its higher SNRs
compared to S2

HH on the sea surface. The hydrocarbons on the sea surface damp the short gravity and
capillary waves of the sea surface, and hence, they are usually observed as very low backscatter areas.
However, very similar dark areas can also be observed from SAR images when other kinds of oil are
present, such as biogenic slicks.

2.2.2. H/α Decomposition Parameters

In 1997, Cloude and Pottier proposed a polarimetric information extraction method based on the
decomposition of the 3 × 3 coherency matrix (3) of the target [31]:

T = U3

 λ1

λ2

λ3

UH
3 (3)

where H stands for transpose conjugate, and U3 can be parameterized by Equation (4):

U3 =

 cos(α1)ejφ1 cos(α2)ejφ2 cos(α3)ejφ3

cos(α1) cos(β1)ejδ1 sin(α2) cos(β2)ejδ2 sin(α3) cos(β3)ejδ3

sin(α1) sin(β1)ejγ1 sin(α2) sin(β2)ejγ2 sin(α3) cos(β3)ejγ3

 (4)

The three eigenvalues of the coherency matrix T are real numbers, arranged as λ1 > λ2 > λ3,
U3 is the unitary matrix, whose column vectors

→
u 1,

→
u 2 and

→
u 3 are the eigenvectors of T:

T =
3

∑
i−1

λ1
→
u 1 ·

→
u

H
1 + λ2

→
u 2 ·

→
u

H
2 + λ3

→
u 3 ·

→
u

H
3 (5)

The probability of three eigenvectors can be calculated by:

Pi =
λi

3
∑

j=1
λj

(6)
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The polarimetric entropy, which describes the randomness of the scattering mechanisms, can be
defined as:

H = −
3

∑
i=1

Pi log3(Pi) (7)

The mean scattering angle α is defined by:

α = P1α1 + P2α2 + P3α3 (8)

The entropy H is a measure of the randomness of the scatter mechanism. It is base-invariant and
closely related to eigenvalue λ, which represents different components of the total scatter power. For a
clean sea surface, Bragg scattering dominates, so H is close to 0. In contrast, for oil slick-covered areas,
the scattering mechanism becomes more complex; stronger random scattering results in higher entropy
values. Moreover, for biogenic slicks, although the scattering power is lower, the main scattering
mechanism is still Bragg, resulting in lower entropy compared to oil-covered areas. This way, H can be
used to distinguish oil slicks and weak damping look-alikes.

Usually jointly used with H, the mean scattering angle α reflects the main scattering mechanism of
the observed target. On slick-free sea surfaces, α is expected to be less than 45◦ as the Bragg scattering is
dominant. In slick-covered regions, larger α can be measured, as a more complex scattering mechanism
is present.

2.2.3. Degree of Polarization

Degree of polarization (DoP) is considered to be a very important parameter characterizing
partially polarized EM waves. It can be derived from the Stokes vectors of any coherent radar modes,
e.g., dual-pol, hybrid/compact and, of course, fully polarimetric SAR modes [32]:

P =

√
g2

i1 + g2
i2 + g2

i3

g2
i0

=

(
1− 4

|Γi|
(trΓi)

2

) 1
2

(9)

where gi is Stokes vectors that can be used to describe both complete and partially polarized wave,
and i stands for different polarization of transmission.

g =


g0

g1

g2

g3

 =


〈
|Ev|2 + |Eh|2

〉〈
|Ev|2 − |Eh|2

〉
2Re〈EhE∗v〉
2Im〈EhE∗v〉

 (10)

where Ev and Eh is vertically and horizontally received backscatter, respectively, and < > also stands
for multilook by using an averaging window.

DoP measures to what extent the scattered wave is deterministic and can be described by a
polarimetric ellipse with fixed parameters. On the Poincare sphere, it represents the distance between
the last three components normalized Stokes vectors and the origin [32]. It is 1 for complete polarized
waves and 0 for fully unpolarized waves. For clean sea surfaces and weak-damping areas, the scattering
mechanism can be described by the Bragg scattering; as a result, the DoP is large. For hydrocarbon
slicks, random scattering mechanisms are dominating, and much lower DoP are observed.

2.2.4. Ellipticity χ

Ellipticity χ describes the polarization status of the scattered EM wave. From the Stokes vector,
it can be calculated by:

sin(2χ) = − s3

ms0
(11)
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where m stands for the degree of polarization of the received EM wave.
The parameter χ can be employed as an indicator of the scattering mechanism. For slick-free sea

surfaces where Bragg scattering is dominant, the sign of χ is negative. For oil-covered sea surfaces, as
a more random scattering mechanism is present, χ will be larger and can become positive [28]. This
feature makes χ a logical binary descriptor of slick-free vs. oil-covered areas.

2.2.5. Pedestal Height

Normalized radar cross-section (NRCS) σ0 measures how detectable an object is per unit area on
the ground. In the co-polarized signature of the scene, the σ0 is a function of both the tilting angle Φ

and the ellipticity χ of the polarization ellipse. The pedestal height (PH) is defined as the lowest value
of all the σ0, plotted in the co-polarized signature. The PH describes the unpolarized energy of the
total scattering power and behaves as a pedestal on which the co-polarized signature is set [14,33].
The normalized pedestal height (NPH) can be approximately calculated as the minimum eigenvalue
divided by the maximum one:

NPH =
min(λ1, λ2, λ3)

max(λ1, λ2, λ3)
(12)

For clean sea surfaces, the scattering mechanism is pure Bragg, so an NPH value close to 0 is
expected. For an oil-covered area, however, much higher NPH can be expected due to the non-Bragg
scattering that reflects a more diverted scattering mechanism.

2.2.6. Co-Polarized Phase Difference

The co-polarized phase difference (CPD) is defined as the phase difference between the HH and
VV channels [3]:

ϕc = ϕHH − ϕVV (13)

From multilook SAR data, it can be also derived as:

ϕc = arg(〈SHHS∗VV〉) (14)

where arg(*) stands for phase calculation.
The standard deviation of CPD has been proposed as a very efficient parameter indicating sea

surface scattering mechanisms [3]. It can be estimated from ϕc using a sliding window. On slick-free
sea surfaces, the HH-VV correlation is high, and a narrow CPD distribution is expected. This resulting
CPD will have a small standard deviation, similarly for weak-damping surfactant-covered areas. In oil
slicks where the Bragg scattering is weakened and other scattering mechanisms increase, the HH-VV
correlation largely decrease. As a result, the CPD pdf becomes broader, and its standard deviation
largely increases.

2.2.7. Conformity Coefficient

The conformity coefficient µ was firstly used in compact polarimetric SAR applications for soil
moisture estimations (Freeman et al., 2008). In a fully polarimetric scheme, it can be approximated
as [6]:

µ ∼=
2(Re(SHHS∗VV)− |SHV |2)
|SHH |2 + 2|SHV |2 + |SVV |2

(15)

The conformity coefficient µ evaluates whether surface scattering is the dominant among all
the scattering mechanisms. For a slick-free sea surface, Bragg scattering results in a very small
cross-pol power and high HH-VV correlations and Re(SHHS∗VV) > |SHV |2; hence, µ is positive.
However, for hydrocarbon-covered areas, as non-Bragg scattering exists, HH-VV correlation is lower,
and cross-pol component largely increases, which is very likely to have Re(SHHS∗VV) < |SHV |2;
hence, µ is negative. For weak-damping cases, such as biogenic slicks, since Bragg scattering is
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still dominant, Re(SHHS∗VV) > |SHV |2 is still valid and results in positive µ. Under this rationale,
conformity coefficients can be used to effectively distinguish hydrocarbon slicks from biogenic slicks.

2.2.8. Correlation and Coherence Coefficients

The correlation and coherence coefficients that are derived from the coherence matrix are also
used for oil slick discrimination [34].

ρHH/VV =

∣∣∣∣∣
〈
SHHS∗VV

〉〈
S2

HH
〉〈

S2
VV
〉 ∣∣∣∣∣ (16)

Coh =
|〈T12〉|√
〈T11〉〈T22〉

(17)

where Tij are elements of the coherence matrix T.
These two parameters both lie between 0 and 1. For a slick-free area, where Bragg scattering is

dominant, HH and VV channels are highly correlatable, so they are expected to be very close to 1. For
an oil-covered sea surface, a much lower HH/VV correlation is expected, so both the correlation and
coherence coefficients are much lower.

The polarimetric SAR features above and their relative behaviors in the presence of different
ocean surface targets are summarized in Table 1.

Table 1. Behaviors of main polarimetric SAR features on different types of surfaces. DoP, degree of
polarization; CPD, co-polarized phase difference.

Pol-SAR Features Clean Sea Surface Mineral Oil
(Strong Damping)

Biogenic Slicks
(Weak Damping)

Entropy (H) Lower High Low
Alpha (α) Lower High Low

DoP High Low High
Ellipticity Negative Positive Negative

Pedestal Height (PH) Lower High Low
Std. CPD Lower High Low

Conformity Coefficient Positive Negative Positive
Correlation Coefficient Higher Low High
Coherence Coefficient Higher Low High

S2
VV High Low Low

Note: “lower” and “higher” means that the property of the feature on a certain type of surface is close to the other
surface that has the property of “low” or “high”, but slightly lower or higher. “Std. CPD” stands for the standard
deviation of CPD.

2.3. Dual- and Compact Polarimetric SAR Modes

Compact polarimetric SAR modes were proposed to solve the contradiction between polarimetric
observation capabilities and the swath width, system complexity, power budget and data rate of the
radar system. Actually, the idea of transmitting one polarized signal and coherently recording the
backscattered signal in H and V polarimetric channels was considered by U.S. scientists as far back as
1960. In the 2000s, this operation mode was reconsidered by Souyris et al. [16] and was given the new
name of “compact polarimetric” to differentiate from “fully polarimetric” or “quad-polarimetric”.

Dual polarimetric (DP) SAR systems transmit a horizontal (H) or a vertical (V) linearly-polarized
signal and coherently record both horizontal and vertical polarized backscattered signals. They can
be treated as a special kind of compact polarimetric SAR mode. In real applications, usually HH/HV
or HV/VV dual polarization modes are used, for the reason that in these modes, only the H or V
polarized signal is transmitted. However, on the sea surface, the backscatter of the cross-polarized
channel (HV) is usually much lower than the co-polarized channels [34], sometimes close to the noise
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floor of the radar instruments. As a result, HH/HV dual polarimetric modes have limited performance
on oil spill classification applications. Although there is no HH-VV dual polarimetric SAR operating,
except a special experimental imaging mode of TerraSAR-X, this mode is considered for comparative
analysis in this paper.

The 2D measurements vector
→
K of HH/VV dual-polarized, π/2 and π/4 compact polarimetric

SAR modes are provided in Equations (18)–(20), respectively:

→
K HHVV =

(
SHH
SVV

)
(18)

→
K pi/2 =

1√
2

(
SHH − jSHV
SHV − jSVV

)
(19)

→
K pi/4 =

1√
2

(
SHH + SHV
SHV + SVV

)
(20)

Table 2 lists several main polarimetric SAR modes, which can be differentiated by their different
transmission and receiving polarimetric combinations.

The covariance matrix can also be used to reflect the second order statistics of the dual and
compact polarimetric SAR data, which can be derived from their scattering matrix by:

CCP = 2
〈→

KCP
→
K
∗
CP

〉
(21)

where
→
KCP stands for measurements vector

→
K of different dual- and compact polarimetric SAR modes.

Table 2. Different polarimetric SAR modes.

Transmit
Receive H V H and V (Incoherently) H and V (Coherently) R and L (Coherently)

H Single Single Alternating Dual Pol —
V Single Single Alternating Dual Pol —

H and V — — Alternating — —
45◦ — — — π/4 Compact
R/L — — — π/2 Compact (Hybrid) Dual-circular (DCP)

Note: Blank means that at the present stage, there is not an operational SAR system with such a transmit/receive
combination. R and L stand for right and left circular polarization, respectively.

2.4. Universal Feature Extraction from Dual- and Compact Polarimetric SAR Data

In order to explore polarimetric information, the following methods can be used to universally
extract features from the measurements vectors of dual- and compact polarimetric SAR data. The
features extracted from dual- and compact polarimetric modes shares similar characteristics as those
derived from fully polarimetric mode, in the presence of a clean sea surface, hydrocarbons and biogenic
films. Of course, some differences can also be observed between them for the reason that they carry
different parts of the information of quad-pol SAR data. In the following part of this paper, they are
compared and analyzed.

2.4.1. Elements in Measurement Vector
→
K

The elements of the measurement vector
→
K of dual and compact polarimetric SAR modes can be

derived from Equations (18)–(20):
→
K =

(
EH EV

)T
(22)
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where T stands for the transpose.
Since for the sea surface, usually S2

HV is much smaller compared with the backscatter of
co-polarized channels, E2

V represents close physical meaning to S2
VV . It is selected as one of the

features in classification experiments based on compact polarimetric SAR modes.

2.4.2. H/α Decomposition Parameters

Polarimetric entropy of CP SAR data can be directly calculated from the eigenvalues of the
covariance matrix CCP:

H =
2

∑
i=1
−Pi log2 Pi (23)

Pi =
λi

∑
j

λi
(24)

Additionally, λi (i = 1, 2) is the eigenvalue of coherency matrix CCP. Entropy that is derived
directly from CP SAR data has similar performance as that derived from quad-pol SAR data, in
describing the complexity of the physical scattering mechanisms of targets.

Then, the mean scattering angle in CP SAR modes can be approximated by:

α = P1α1 + P2α2 (25)

where αi can be derived from the eigenvector of the covariance of CP SAR data, similarly as in
Section 2.2.

2.4.3. Degree of Polarization and Ellipticity

The degree of polarization and ellipticity can be similarly calculated from the Stokes vector of CP
SAR mode, as introduced in Section 2.2.

2.4.4. Pedestal Height

Similarly, as in Section 2.2.5, pedestal height can be estimated from the eigenvalues of the
covariance matrix of compact polarimetric SAR data by:

NPH =
min(λ1, λ2)

max(λ1, λ2)
(26)

2.4.5. Co-Polarized Phase Difference

CPD can be proximately estimated from covariance matrix of CP SAR data by:

ϕc(CP) = arg{−iEHE∗V} (27)

Then, its standard deviation within a certain spatial window can be computed. In this paper, a
window of 5 × 5 is applied.

2.4.6. Conformity Coefficient

Only for π/2 mode, the conformity coefficient is expressed as [6]:

Con f ∼=
2Im(

〈
EHE∗V

〉
)〈

EHE∗H
〉
+
〈

EV E∗V
〉 (28)
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2.4.7. Correlation Coefficient and Coherence Coefficient

Following the same rationale as in Section 2.2.8, the correlation coefficient in CP SAR mode can
be defined as [6]:

Corr =
Re
{
−i
〈

EHE∗V
〉}√〈

|EH |2
〉〈
|EV |2

〉 (29)

Additionally, for CP SAR modes, the coherency coefficient can be derived by:

Coh =
|D12|√
D11D22

(30)

where the coherency matrix D for dual- and compact polarimetric SAR modes can be defined as:

D =

(
〈EH + iEV〉2 〈EH + iEV〉〈EH − iEV〉∗

〈EH + iEV〉∗〈EH − iEV〉 〈EH − iEV〉2

)
(31)

2.5. Supervised Classifications

Supervised classifications can take advantage of training data samples to set up the decision rule
for classification, which has the best capability of fitting training datasets, as well as predicting the
class of testing data samples. In this paper, three largely used supervised classifiers are considered.

2.5.1. Support Vector Machine (SVM)

SVM is based on structural risk minimization, the basic idea of which is to map multi-dimensional
feature into a higher dimensional space and use a hyperplane to separate them linearly with the
maximum margin between different classes [35]. SVM has superb performance in dealing with
classification problems with a small number of training datasets. It firstly maps training vectors xi into
a higher dimensional space by using kernel function Φ and, hence, finds a linear separating hyperplane
with the maximal margin in this higher dimensional space. In this paper, the radial basis function is
adopted as the kernel function.

2.5.2. Artificial Neural Network (ANN)

ANN was designed based on the nervous systems of animals [36]. It can be used to estimate
the complicated unknown functions based on a large number of inputs. ANNs are often used for
supervised classification for their adaptive nature. They can often obtain good performance when
the training samples are sufficient. In this paper, the feed-forward neural network (FFNN) with three
layers is considered. In the FFNN, each neuron (or call “unit”) contains a transfer function. The neuron
of the hidden and output units performs the nonlinear sigmoid function, while the input units have
an identity transfer function. Then, layers are connected to each other by a system of weights, which
multiplicatively scale the values traversing the links. The weights and bias of these links in the network
is firstly randomly initiated and then fine-tuned through the backpropagation process.

2.5.3. Maximum Likelihood Classification (ML)

ML is a kind of classical classifier that is widely used in a variety of remote sensing applications.
Based on training data, the maximum likelihood method selects the set of values of the model
parameters that maximizes the likelihood function [37].

2.6. Features Selection Scheme

In a classification scheme, continuously adding features generates the well-known pattern
recognition problem known as the “curse of dimensionality”, which means that the classification
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performance will not always improve with the increase of added features, especially when the number
of training data samples is limited. Sometimes, “bad” features may even largely lower the classification
accuracy. Moreover, the increase of the number of features makes the classification algorithms time
consuming. In this paper, a forward feature selection scheme is considered, to choose the optimum
feature sets for each classifier: starting from the best 2 features, the classification chooses to add the
feature that provides the largest improvement on classification accuracy at each time. Then, in the
comprehensive analysis, feature sets that achieved the best classification performance are employed.

2.7. Classification Accuracy Evaluation

In this study, overall accuracy (OA) and kappa coefficients (Kappa) are employed to quantitatively
evaluate the classification accuracy. They can be derived from the confusion matrix of the testing data
samples, where the rows represent the classified results and columns represent the referenced data. In
the confusion matrix, the last row is the sum of all previous rows, and the last column is the sum of all
previous columns. The OA is calculated by summing the number of pixels classified correctly divided
by the total number of pixels, and the kappa coefficient measures the accuracy of the classification in
another way; the definitions of both of them are shown below:

OA =

n−1
∑

i=1
Xii

Xnn
(32)

Kappa =

Xnn
n−1
∑

i=1
Xii −

n−1
∑

i=1
(XinXni)

X2
nn −

n−1
∑

i=1
(XinXni)

(33)

where X =
{

xij
}

n×n (i, j = 1, 2, 3, . . . , n) is the confusion matrix and Xin stands for the number of
samples that belongs to the i-th class and classified as n-th class.

2.8. Dimension Reduction

Various features can be extracted from polarimetric SAR data. However, inevitably, they are
correlated and suffer from noise. In this study, three typical algorithms, principle component analysis
(PCA), local linear embedding (LLE) and ISOMAP, were comparatively employed to reduce the
dimension of polarimetric SAR features.

PCA reduces the number of features by replacing them with their linear combination. These
new features are derived by the idea of maximizing their variance and making them uncorrelated. It
comes from the theory of linear algebra; PCA has been abundantly used in many applications and has
become a very popular method for its highly efficient, non-parametric characteristic.

LLE is an unsupervised learning algorithm that computes low-dimensional, neighborhood-
preserving embeddings of high-dimensional inputs. It maps its inputs into a single global coordinate
system of lower dimensionality, and its optimizations do not involve local minima. LLE is capable of
learning the global structure of nonlinear manifolds based on the exploration of the local symmetries
of linear reconstructions [38].

ISOMAP takes advantage of local metric information by measuring geodesic distances and
learning the underlying global geometry of a dataset. Developed from multidimensional scaling
(MDS), it is capable of discovering the nonlinear degrees of freedom that underlie complex natural
observations, such as human handwriting or images of a face under different viewing conditions [39].

3. Results

In this study, features extracted from RADARSAT-2 quad-pol SAR data were analyzed. The
pseudo RGB image of the Radarsat-2 data on the Pauli basis are provided in Figure 2. It was acquired
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during the 2011 Norwegian oil-on-water experiment, in which three verified slicks were present; from
left to right, they were: biogenic film, emulsions and mineral oil [34]. The biogenic film was simulated
by Radiagreen ebo plant oil. Emulsions were made of Oseberg blend crude oil mixed with 5% IFO380
(Intermediate Fuel Oil), released 5 h before the radar acquisition. Additionally, the Balder crude oil
was released 9 h before the radar acquisition [34].

In this study, the effect of feature numbers on the final classification result is analyzed, by
considering three major supervised classifiers, namely, SVM, ANN and ML. Based on the quad-pol SAR
data, dual-pol and compact polarimetric SAR data were also simulated, then features were extracted
based on uniform feature extraction algorithms. Before the process of supervised classification, all of
the features were normalized to the range of 0–1. Finally, the performance of features extracted from
different polarimetric SAR modes in oil spill classification are compared and analyzed.Appl. Sci. 2017, 7, 193  13 of 23 

 

Figure 2. Pauli RGB image of RADARSAT-2 data. 

In the supervised classification experiment, 5393 and 5467 pixels of mineral oil covered and 

non-covered (including clean sea surface and biogenic films) training samples were picked within 

the study area respectively. Then, 5550 and 5535 testing samples of these two types are picked as 

the ground truth. The training and testing samples do not include each other. Both the training and 

testing sample include comparable numbers of pixels that are visually identified (based on ground 

truth) as clean sea surface, mineral oil and biogenic films (weak-damping surfactants). 

3.1. Oil Spill Classification Based on Fully Polarimetric SAR Features 

In the classification based on quad-pol SAR data, feature numbers from 2–10 are considered. 

The polarimetric features derived from quad-pol SAR data considered in the study are listed in 

Table 3. All of the features considered in this experiment are provided in Figure 3. In the display, all 

of the features are normalized to [0, 1]. In Figure 4, the tendency of overall accuracy achieved by 

three classifiers is plotted. The best classification result was achieved when considering eight 

features for SVM, nine features for ANN and four features for MLC. Generally, SVM achieved the 

best classification performance, followed by ANN. This result proved the superb capability of SVM 

in dealing with a large number of features. It can be observed that in all of the classifications, after 

the best four features have been introduced, the classification results began to fluctuate and did not 

change very much. These four features are: pedestal height, correlation coefficient, standard 

deviation of CPD and alpha angle. The eight features used for SVM classification are: 
2

VVS , 

pedestal height, entropy, DoPHHVV, correlation coefficient, coherency coefficient, standard deviation 

of CPD and alpha angle. The nine features used for ANN are all of the features except ellipticity. As 

introduced in the previous session, all of these features have strong physical meaning, which 

enables them to largely contribute to the classification between mineral oil and clean sea 

surface/biogenic film. They are also not likely affected by the noise floor. 

Table 3. Features that derived from quad-polarimetric SAR data. 

Number Feature 

1 
2

VVS  

2 Pedestal Height 

3 Entropy 

4 DoPHHVV 

5 Correlation Coefficient 

6 Conformity Coefficient 

Figure 2. Pauli RGB image of RADARSAT-2 data.

In the supervised classification experiment, 5393 and 5467 pixels of mineral oil covered and
non-covered (including clean sea surface and biogenic films) training samples were picked within
the study area respectively. Then, 5550 and 5535 testing samples of these two types are picked as the
ground truth. The training and testing samples do not include each other. Both the training and testing
sample include comparable numbers of pixels that are visually identified (based on ground truth) as
clean sea surface, mineral oil and biogenic films (weak-damping surfactants).

3.1. Oil Spill Classification Based on Fully Polarimetric SAR Features

In the classification based on quad-pol SAR data, feature numbers from 2–10 are considered. The
polarimetric features derived from quad-pol SAR data considered in the study are listed in Table 3.
All of the features considered in this experiment are provided in Figure 3. In the display, all of the
features are normalized to [0, 1]. In Figure 4, the tendency of overall accuracy achieved by three
classifiers is plotted. The best classification result was achieved when considering eight features for
SVM, nine features for ANN and four features for MLC. Generally, SVM achieved the best classification
performance, followed by ANN. This result proved the superb capability of SVM in dealing with a
large number of features. It can be observed that in all of the classifications, after the best four features
have been introduced, the classification results began to fluctuate and did not change very much.
These four features are: pedestal height, correlation coefficient, standard deviation of CPD and alpha
angle. The eight features used for SVM classification are: S2

VV , pedestal height, entropy, DoPHHVV,
correlation coefficient, coherency coefficient, standard deviation of CPD and alpha angle. The nine
features used for ANN are all of the features except ellipticity. As introduced in the previous session,
all of these features have strong physical meaning, which enables them to largely contribute to the
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classification between mineral oil and clean sea surface/biogenic film. They are also not likely affected
by the noise floor.

Table 3. Features that derived from quad-polarimetric SAR data.

Number Feature

1 S2
VV

2 Pedestal Height
3 Entropy
4 DoPHHVV
5 Correlation Coefficient
6 Conformity Coefficient
7 Coherency Coefficient
8 Ellipticity χ
9 CPD Standard Deviation

10 Alpha Angle

Note: Features 4 and 8 were extracted from the Stokes vector considering the HH and VV channels.
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Figure 4. Classification accuracy achieved by three classifiers with the number of features changing
from 2–10.

The best classification result was achieved by SVM with eight quad-polarimetric SAR features.
This is shown in Figure 5a. Figure 5b,c demonstrates the classification results obtained by ML and ANN,
respectively, where the red color indicates mineral oil and green indicates non-oil area. The confusion
matrix of the best classification results achieved by these three classifiers is listed in Tables 4–6. From
the detailed analysis on the confusion matrix of these classification results, it can be observed that
the major reason that SVM is superior to the other two classifiers is that it successfully controlled the
commission error of non-oil area, namely the error caused by wrongly classified clean sea surface and
biogenic slicks.
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Table 4. Confusion matrix achieved by SVM based on 8 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5429 178 5607
Sea 121 5357 5478

Total 5550 5535 11,085

Overall accuracy = 97.3027% (10,786/11,085), kappa coefficient = 0.9461.

Table 5. Confusion matrix achieved by ML based on 4 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5411 256 5667
Sea 139 5279 5418

Total 5550 5535 11,085

Overall accuracy = 96.4366% (10,690/11,085), kappa coefficient = 0.9287.

Table 6. Confusion matrix achieved by ANN based on 9 fully polarimetric features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5427 232 5659
Sea 123 5303 5426

Total 5550 5535 11,085

Overall accuracy = 96.7975% (10,730/11,085), kappa coefficient = 0.9359.

3.2. Oil Spill Classification Based on Different Polarimetric SAR Modes

In this part, as listed in Table 7, dual- and compact polarimetric SAR features are extracted
from simulated SAR datasets (the conformity coefficient is only available in π/2 mode). The overall
classification accuracy of three classifiers based on the features extracted from different polarimetric
SAR modes is compared in Figure 6.

Table 7. Uniform dual and compact polarimetric features considered in the study.

Number Feature *

1 E2
V

2 Pedestal Height (CP)
3 Entropy (CP)
4 DoP (CP)
5 Correlation Coefficient (CP)
6 Alpha Angle (CP)
7 Coherency Coefficient (CP)
8 Ellipticity χ (CP)
9 CPD Standard Deviation (CP)

10 Conformity Coefficient (π/2)

* Features 1–9 are extracted from dual and compact polarimetric SAR data following the methods introduced
in Section 2.4, while Feature 10 is only available for π/2 mode. “CP” stands for features derived from compact
polarimetric SAR data in order to distinguish them from those calculated from quad-pol SAR data.
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Quad-pol (QP) feature-based classification has the highest OA, followed by π/2 compact
polarimetric SAR mode and HH/VV dual-polarized (DP) mode. π/4 mode-based classification
has the lowest performance. In QP and π/2 modes, SVM achieved the best performance, while
for HH/VV DP and π/4 modes, better performance was achieved by ML. Furthermore in dual- and
compact polarimetric SAR modes, ML outperformed ANN; this may be explained by the fact that ANN
has a higher requirement to the separability of the dataset and is more vulnerable to the loss or mixture
of crucial information of the dataset. The confusion matrices of the classification results achieved by
SVM based on features extracted from different polarimetric SAR modes are listed in Tables 8–10, with
the feature number that achieved the best classification performance, and the classification results are
demonstrated in Figure 7a–c.

Similar supervised classification experiments were also conducted based on single polarimetric
feature S2

VV only. A much lower overall accuracy (61.7772%) and kappa coefficient (0.2348) were
obtained. Figure 7d shows the classification result, from which it could be observed that most
parts of the biogenic slick were misclassified to mineral oil. The confusion matrix (Table 11) further
supported this observation. This result manifested the limitation of single polarimetric SAR mode in
distinguishing mineral oil and biogenic films.

Table 8. Confusion matrix achieved by SVM based on 9 dual-polarized (DP) mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5357 445 5802
Sea 193 5090 5283

Total 5550 5535 11,085

Overall accuracy = 94.2445% (10,447/11,085), kappa coefficient = 0.8849.

Table 9. Confusion matrix achieved by SVM based on 10π/2 mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5378 363 5741
Sea 172 5172 5344

Total 5550 5535 11,085

Overall accuracy = 95.1737% (10,550/11,085), kappa coefficient = 0.9035.
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Table 10. Confusion matrix achieved by SVM based on 9π/4 mode features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5316 595 5911
Sea 234 4940 5174

Total 5550 5535 11,085

Overall accuracy = 92.5214% (10,256/11,085), kappa coefficient = 0.8504.

Appl. Sci. 2017, 7, 193  18 of 23 

Table 10. Confusion matrix achieved by SVM based on 9π/4 mode features. 

Class 
Ground Truth (Pixels) 

Oil Sea Total 

Oil 5316 595 5911 

Sea 234 4940 5174 

Total 5550 5535 11,085 

Overall accuracy = 92.5214% (10,256/11,085), kappa coefficient = 0.8504. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Classification result using SVM based on the features of: (a) DP mode; (b) π/4 mode;  

(c) π/2 mode; (d) 
2

VVS . 

Table 11. Confusion matrix achieved by SVM based on 
2

VVS . 

Class 
Ground Truth (Pixels) 

Oil Sea Total 

Oil 5438 4125 9563 

Sea 112 1410 1522 

Total 5550 5535 11,085 

Overall accuracy = 61.7772% (6848/11,085), kappa coefficient = 0.2348. 

3.3. Oil Spill Classification Based on Dimension Reduction of Features 

Based on the new feature sets, classification was conducted by using SVM. The classification 

results obtained by employing the three feature dimension reduction methods are shown in  

Figure 8. Tables 12–14 demonstrate the performance of classification. The feature set derived from 

LLE achieved the highest overall accuracy of 92.1696%. The feature set derived from PCA obtained 

an OA of 91.1322%, with the lowest false alarm rate. The feature set derived from ISOMAP had an OA 

of 90.8705%, which is the lowest among these three algorithms. Generally, feature reduction algorithms 

have acceptable performance in keeping the key information for distinguishing mineral oil and biogenic 

films. However, in this experiment, the performance achieved by dimension reduced feature sets is 

constantly lower than the original feature sets, which may be related to the issue of sample selection. 

Figure 7. Classification result using SVM based on the features of: (a) DP mode; (b) π/4 mode; (c) π/2
mode; (d) S2

VV .

Table 11. Confusion matrix achieved by SVM based on S2
VV .

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 5438 4125 9563
Sea 112 1410 1522

Total 5550 5535 11,085

Overall accuracy = 61.7772% (6848/11,085), kappa coefficient = 0.2348.

3.3. Oil Spill Classification Based on Dimension Reduction of Features

Based on the new feature sets, classification was conducted by using SVM. The classification
results obtained by employing the three feature dimension reduction methods are shown in Figure 8.
Tables 12–14 demonstrate the performance of classification. The feature set derived from LLE achieved
the highest overall accuracy of 92.1696%. The feature set derived from PCA obtained an OA of
91.1322%, with the lowest false alarm rate. The feature set derived from ISOMAP had an OA of
90.8705%, which is the lowest among these three algorithms. Generally, feature reduction algorithms
have acceptable performance in keeping the key information for distinguishing mineral oil and biogenic
films. However, in this experiment, the performance achieved by dimension reduced feature sets is
constantly lower than the original feature sets, which may be related to the issue of sample selection.
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Table 12. Confusion matrix achieved by SVM based on four features derived from PCA on quad-pol
SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4649 82 4731
Sea 901 5453 6354

Total 5550 5535 11,085

Overall accuracy = 91.1322% (10,102/11,085), kappa coefficient = 0.8227.

Table 13. Confusion matrix achieved by SVM based on four features derived from local linear
embedding (LLE) on quad-pol SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4879 197 5076
Sea 671 5338 6009

Total 5550 5535 11,085

Overall accuracy = 92.1696% (10,217/11,085), kappa coefficient = 0.8434.

Table 14. Confusion matrix achieved by SVM based on four features derived from ISOMAP on
quad-pol SAR features.

Class
Ground Truth (Pixels)

Oil Sea Total

Oil 4809 271 5080
Sea 741 5264 6005

Total 5550 5535 11,085

Overall accuracy = 90.8705% (10,073/11,085), kappa coefficient = 0.8174.

4. Discussion

With the help of polarimetric information, oil slicks and their biogenic films can be well separated.
Experiments proved that the classification performance does not always increase with introducing
more features; it fluctuates or decreases after the sufficient features are considered. This effect can be
attributed to correlated and contradicting information carried in these features. In the demonstrated
case, a set of four key features is sufficient, and the classification performance does not increase much
when introducing more features. This phenomenon shows that most polarimetric information can be
provided by several powerful and complementary features. As a result, in real applications, only a few
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representative features need to be extracted to save computing time and avoid the problem of “curse
of dimensionality”.

In this study, we present a comparative study on features extracted from different polarimetric
SAR modes to provide valuable information for oil spill classification. It was proven that quad-pol
features have the highest overall accuracy, while π/2 compact polarimetric SAR modes had the
best performance among all compact and dual-polarimetric SAR modes, followed by HH/VV
dual-polarimetric SAR modes. The lowest performance was achieved by π/4 mode. In π/2 mode,
the circularly-polarized signal is transmitted, which has been proven to be more suitable for a series
of marine remote sensing applications [6,23], since it is very sensitive to the change of scattering
mechanisms on the sea surface. HH-VV phase correlation is very helpful for distinguishing marine
oil spill and biogenic oil slicks [3], and thus, HH/VV dual-polarization mode achieved relatively
good performance.

In fully and π/2 compact polarimetric modes when the separability of the features is high, SVM
achieved the highest performance in comparison with other supervised classifiers. The advantage
of SVM is its good capability of handling the problem of the “curse of dimensionality”. It has better
performance in dealing with data of a high dimensional feature space in supervised classification
applications, such as this illustrated case. For quad-pol feature-based classification, ANN performed
slightly better than ML, and for other modes, ML performed better than ANN. A possible explanation
is that ANN is very sensitive to the quality of features and has the trend of over-training when dealing
with features with disturbance. Therefore, in compact and dual-polarimetric SAR modes, ML performs
better than ANN, although the latter one is more sophisticated in its architecture.

This study shows that polarimetric SAR can distinguish mineral oil from biogenic slicks. An
important result is that the identification of different oils (bunker oil, crude oil, petrochemical films) is
very important for clean-up operations. Different oils have different physical/chemical properties,
e.g., viscosity, density, evaporation rate, etc., and theoretically, a difference in these properties can be
observed in polarimetric SAR images. However, currently, there is not enough valid data to support
this latter postulate. This analysis can be made in the future.

It is important to analyze the behavior of weathering oil in polarimetric SAR images. Particularly,
evaporation, emulsification and sinking are important related slick detections by SAR. Studies [40,41]
indicate that the percentages of oil trapped, evaporated and at the surface vary with the type of oil spilt
and with the location in which spills are firstly generated. In essence, the movement of oil, its original
type/density and the time that leads to its emulsification/evaporation/sinking are variable in different
oil spills. It is also considered crucial to understand the effects of emulsification and ocean-driven slick
movement in the size(s) and distribution of oil slicks at the surface for environmental protection [42].
Hence, more detailed experiments should be made to quantitatively analyze the degree of degradation
of an oil spill based on polarimetric SAR.

5. Conclusions

The Norwegian oil-on-water experiment in 2011 provided polarimetric SAR acquisition with
verified oil spill and biogenic slicks on one scene of Radarsat-2 data. More quad-pol SAR data samples
are being further collected to derive more detailed and convincing results in the near future studies.

The key findings of this comparative study can be summarized as follows:

• Polarimetric SAR features can be input into supervised algorithms to achieve reliable oil spill
classification. For this dataset, a feature set with four features is sufficient for most polarimetric
features based oil spill classifications. They are: pedestal height, correlation coefficient, standard
deviation of CPD and alpha angle.

• Among all of the compact polarimetric SAR modes, π/2 mode has the best performance among
all of the dual- and compact polarimetric SAR modes, for its sensitivity to different scattering
mechanisms caused by mineral oil and biogenic look-alikes.
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• Among all of the supervised classifiers, SVM outperforms other classifiers when sufficient
polarimetric information can be obtained, such as quad-pol mode. ML performs better than
other supervised classifiers when only incomplete polarimetric information is available, such as
traditional dual-pol and π/4 mode.

The reasons for the unreliable results in feature reduction experiments may be attributed
to insufficient data sampling when computing feature maps. The understanding of oil in the
characteristics of polarimetric SAR imagery is key to optimize the processing procedures of automatic
oil spill detection and classification algorithms.

In the near future, there will be more compact polarimetric SAR data available for marine
surveillance applications. The polarimetric observation capabilities of these sensors will largely
improve the efficiency and reliability of oil spill detection and any future classifications applications
based on SAR data.
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