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ABSTRACT

How to extract the causal relations in climate–cyclone interactions is an important problem in atmospheric

science. Traditionally, themost commonly used researchmethodology in this field is time-delayed correlation

analysis. This may be not appropriate, since a correlation cannot imply causality, as it lacks the needed

asymmetry or directedness between dynamical events. This study introduces a recently developed and very

concise but rigorous formula—that is, a formula for information flow (IF)—to fulfill the purpose. A new way

to normalize the IF is proposed and then the normalized IF (NIF) is used to detect the causal relation between

the tropical cyclone (TC) genesis over the western North Pacific (WNP) and a variety of climate modes. It is

shown that El Niño–Southern Oscillation and Pacific decadal oscillation are the dominant factors that

modulate theWNPTC genesis. The western Pacific subtropical high and the monsoon trough are also playing

important roles in affecting the TCs in the western and eastern regions of the WNP, respectively. With these

selected climate indices as predictors, a method of fuzzy graph evolved from a nonparametric Bayesian

process (BNP-FG), which is capable of handling situations with insufficient samples, is employed to perform a

seasonal TC forecast. A forecast with the classic Poisson regression is also conducted for comparison.

The BNP-FG model and the causality analysis are found to provide a satisfactory estimation of the number

of TC genesis observed in recent years. Considering its generality, it is expected to be applicable in other

climate-related predictions.

1. Introduction

In predicting the interannual variability of tropical

cyclone (TC; see appendix A for a glossary of the ac-

ronyms) geneses over the western North Pacific (WNP),

there are two outstanding problems that have caught

wide attention. The first problem is unraveling the

causal relation between various climate factors and the

WNP TC genesis, and the other problem is how to fore-

cast the TC genesis. Regarding the first problem, there

have been many studies on cyclone–climate interactions

over the WNP. For example, Wang and Chan (2002) and

Zhan et al. (2011) found that El Niño–Southern Oscillation

(ENSO) contributes to both the east–west shift of theWNP

TCbirth places and theTC intensity, becauseENSOplays a

vital role in the interannual variability of the barotropic

energy conversion in the region, which leads to change in

meridional shear of the large-scale zonal wind, and hence

induces more intense TCs in El Niño years. Motivated by

Gray (1998), Chia andRopelewski (2002) observed that the

interannual modulation of the WNP TC genesis is related

to the west Pacific sea surface temperature (SST), the
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zonal vertical wind shear (ZVWS), the western Pacific

subtropical high (WPSH), and the monsoon trough;

a similar conclusion was reached by Chen et al. (2006) and

Huangfu et al. (2017). Zhang et al. (2017) reproduced the

relationship between WNP TC activity and anomalous

ZVWS caused by Atlantic meridional mode–induced

changes to the Walker circulation. It is found that all four

of the abovementioned climate modes—that is, ENSO,

ZVWS,WPSH, and the monsoon trough—may be related

to the interannual variation of the central equatorial Pacific

heating and the subsequent Rossby wave response, and

hence may cause the low-level anomalous development of

cyclones and/or anticyclones (Chia and Ropelewski 2002).

Recently, Zhan et al. (2011) and Ha et al. (2015)

linked the interannual variability of WNP TC occur-

rence to the SST in the east Indian Ocean (EIO SST).

Twomajor mechanisms have been proposed to interpret

how EIO SST affects the WNP TC genesis. The first is

that EIO SST leads to a land–sea thermal contrast, in-

ducing an abnormal East Asian and WNP summer

monsoon associated with the monsoon trough, and thus

affecting the TC genesis in the region. The second is that

the EIO SSTA can excite equatorial Kelvin waves to the

east, influencing the surface pressure over the equatorial

region and contributing to anomalous anticyclonic (cy-

clonic) vorticity and divergence (convergence) in the

region of concern. Both of thesemechanisms result in an

anomalous ascending (descending) motion and a wet

(dry) midtroposphere, and hence enhance (suppress)

the TC genesis in the region (Ha et al. 2015).

The WNP TC activity has also been connected to the

slowly varying Pacific decadal oscillation (PDO; Liu and

Chan 2008) and to the quasi-biennial oscillation (QBO;

Chan 1995a). PDO may contribute to the westward

extension and strength of the subtropical high and the

midlevel steering flow affecting the TC occurrence

pattern (Liu and Chan 2008). Camargo and Sobel (2010)

revisited the issue and found no clear link between the

QBO and TC activity.

Although a variety of climate factors, as mentioned

above, that modulate the WNP TC activity have been

identified, much is yet to be explored in tracing the causal

origin of the WNP TC variability. In climate science,

time-delayed correlation analysis is still the primary tool

for causal identification. This is unfortunate, as there has

been strong argument in philosophy against using corre-

lation analysis for this purpose, because, for example,

correlation lacks the needed asymmetry or directedness

between dynamical events (Liang 2014). Causality in the

modern sense begins with Granger (1969), who formu-

lated the problem as a statistical hypothesis testing, and

this approach has been known as the Granger causality

test. On the other hand, a new quantity called transfer

entropy (TE; Schreiber 2000) was empirically proposed,

and it has since been of tremendous interest in various

disciplines (Chatzisavvas et al. 2005; Liu et al. 2010;

Zhang et al. 2006). It has evolved into alternative forms,

such as direct causality entropy (Duan et al. 2013),

transfer zero entropy (Duan et al. 2014), causation en-

tropy (Sun and Bollt 2014), etc. Recently, it has been

established that Granger causality and transfer entropy

1) are actually equivalent up to a factor of 2, and 2) will

give spurious causality inference in several situations; see

Liang (2016) for a brief historical review.

During the past years, Liang (2008, 2014, 2015, 2016)

realized that causality is actually a real physical notion and

can be put on a rigorous footing. In his formalism, cau-

sality is measured by information flow (IF). Rigorous

formulas have been derived in a closed form, and for

linear systems the maximum likelihood estimator of the

IF from a series, say,X1, to another series,X2, turns out to

be very simple. IF in this framework is not only very easy

to evaluate and efficient for detecting causality for linear

systems but proves to be remarkably successful with a

highly nonlinear time series that fails TE and the Granger

causality test (Stips et al. 2016). Then Liang (2015) nor-

malized the obtained IF (NIF) in order to assess the rel-

ative importance of an identified causality. Unfortunately,

the normalization may lead to too-small relative in-

formation flows in many situations (a numerical experi-

ment is supplied in appendix B). An objective of this study

is, therefore, to propose a new formula to normalize the IF

developed in Liang (2014) so as to fit for our climate–

cyclone interactions studies. Another objective regards

the prediction of TC activities. The models for this kind

of prediction can be broadly divided into two groups:

physical models and regression-based methods. For the

first group (Camp et al. 2015; Caron et al. 2011; Chen and

Lin 2013; Hsiao et al. 2015; Reale et al. 2014; Strachan

et al. 2013; Wang 2012; Zhang et al. 2007; Zhao et al.

2010), equations of mathematical physics and their algo-

rithms are developed to describe and solve the dynamical

systems.However, the coarse resolution for the dynamical

models often overestimate the size of the tropical storm

vortices; computation-intensive complexities always pose

a challenge for higher-resolution climate models to im-

plement operational seasonal predictions (Camp et al.

2015). The second group, which includes linear re-

gressions or Poisson regressions, has been widely used for

forecasting TC numbers and variability (Caron et al. 2015;

Chan 1995b; Goh and Chan 2012). However, this method

assumes that the observations obey some certain distri-

bution, say, a normal distribution. It is very difficult to

obtain a reasonable result for a small sample (Shenton and

Bowman 1977) without any clue about the population

shape, which usually is the case in climate science.
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The nonparametric Bayesian process (BNP) approach

may serve as an acceptable tool for modeling unknown

densities. With a BNP model, densities can be estimated

without restriction to any specific parameterized form. The

Gaussian process prior or the Dirichlet process prior has

been commonly used as a BNP prior (Gasparini 1996;

Riihimäki and Vehtari 2014). The challenge with the BNP

model is its analytical intractability in constructing the

prior distribution over scant data (Bai et al. 2017). In this

study, we introduce a fuzzy graph approach (Bai et al.

2014) evolved from a new adaptive BNP (BNP-FG) (Bai

et al. 2017) to improve the performance of annual WNP

TC forecasts with small samples. BNP-FG is mainly based

on the traditional Bayesian scheme and the optimal in-

formation diffusion model (Wang and You 2002), which is

not only an effective method for dealing with the small-

sample problem but can capture complex nonlinear re-

lationships without detailed knowledge of the physical

processes (Bai et al. 2014, 2015).

The main purpose of this paper is to compare the

importance of different climate factors in influencing the

WNP TC genesis and to determine the dominant ones

using the new normalized IF. The main climate factors

are then selected as the input of BNP-FG for a seasonal

prediction of WNP TC geneses with rare observations.

The remainder of this paper is organized as follows.

Section 2 describes the details of the data used in this

paper. To the best of our knowledge, no study reported

in the climate literature has used the IF and BNP-FG.

Therefore, a section (section 3) is devoted to the in-

troduction of their basics, plus our development in the

IF normalization. The results of causality analysis on

cyclone–climate interactions and the annual WNP TC

genesis forecast are presented in section 4 and section 5,

respectively. This study is concluded in section 6.

2. Data

a. Typhoon data

The quality of the data prior to 1970 has been con-

sidered to be poor because of the lack of satellite cov-

erage. We hence select the best-track data of the Joint

Typhoon Warning Center (https://metoc.ndbc.noaa.gov/

web/guest/jtwc/best_tracks/western-pacific) for the pe-

riod 1970–2016 during June–October over the western

North Pacific (08–458N, 1008–1808E). The data from

the Shanghai Typhoon Institute of China Meteoro-

logical Administration (CMA; www.typhoon.org.cn)

and the Regional Specialized Meteorological Center

of the Japan Meteorological Agency (JMA; https://

www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/

trackarchives.html) are also used as for validation pur-

poses. Only the TCs that have at least tropical storm

(TS) intensity (with a maximum sustained wind speed

Vmax $ 17m s21) and a lifetime of 48 h or more are

considered, in order to minimize the uncertainty in

identifying the tropical depression (Liu and Chan 2008)

and to address the artificial trend in short-duration

storms (Landsea et al. 2010). Moreover, we follow the

proposal suggested by Zhan et al. (2011), that is, we

divide the WNP into two subregions—a western region

west of 1458E and an eastern region east of 1458E—since

it displays different trends of TC activity eastward and

westward around 1458E. The positions of TC genesis

FIG. 1. Positions of TC genesis during the typhoon season for the period 1970–2016 during

June–October over the western North Pacific.
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during typhoon season in the western and eastern clus-

ters are shown in Fig. 1.1

b. Climate data

The climate indices in this study are selected based on

the studies mentioned in the introduction. ENSO is char-

acterized by the Niño-3.4 (588S–588N, 1208–708W) index

obtained from the NCEP Climate Prediction Center

(CPC). Data for PDO are obtained directly from the Na-

tionalOceanic andAtmosphericAdministration (NOAA)

Earth SystemResearch Laboratory. In addition, theWNP

(08–458N, 1008–1808E) and EIO (108S–22.58N, 758–1008E)
SST indices are extracted as the average of the Extended

Reconstructed SST analyses from NOAA (Smith and

Reynolds 2003) measured over the associated region. The

definition of theWPSH, as suggested byHong et al. (2015),

is the average grid points of 500-hPa geopotential height

. 588 gpm in the range (108–908N, 1108–1808E). ZVWS is

defined in this paper as the difference in zonal winds be-

tween 200 and 850hPa (Chia and Ropelewski 2002) over

the WNP TC genesis region, and the 850-hPa wind com-

posites may characterize the monsoon trough over the

WNP (Chia and Ropelewski 2002). The associated wind

data are acquired from the monthly National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research reanalysis. Data for QBO are obtained

from the University of Berlin by combining observations

of the zonal winds at 30hPa at the three radiosonde sta-

tions: Canton Island, Gan/Maledive Islands, and Singa-

pore (Naujokat 1986). All the values of the climate factors

for the months of June–October are computed as the av-

erages for each year during 1970–2016 (see Fig. 2). Espe-

cially the data for 2007–16 will be used to validate our

seasonal forecast.

3. Methodologies

a. Information flow normalization

The climate influence study is mainly based on IF, a

physical notion for causality analysis that has just been

rigorously formulated. For two time series, X2 and X1,

Liang (2014) established that the maximum likelihood

estimator of the rate of the IF from X2 to X1 is

T
2/1

5
C

11
C

12
C

2,d1
2C2

12C1,d1

C2
11C22

2C
11
C2

12

, (1)

where Cij denotes the covariance between Xi and Xj,

and Ci,dj is determined as follows. Let _Xj be the finite-

difference approximation of dXj/dt using the Euler

forward scheme,

FIG. 2. Normalized time series of various climate indices used in this study: (a) WNP SST, (b) EIO SST, (c) ENSO, (d) PDO, (e) QBO,

(f) ZVWS, (g) monsoon, and (h) WPSH.

1 If a TC forming on the eastern or western side drops below the

TC threshold while propagating westward or eastward and re-

intensifies on the western or eastern side, we count it only once and

assign it to the eastern or western cluster.
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_X
j,n
5

X
j,n1k

2X
j,n

kDt
,

with k5 1 or k5 2 [the details about how to determine k

are referred to in Liang (2014)] and Dt is the time step.

Term Ci,dj in Eq. (1) is the covariance betweenXi and _Xj.

Ideally, if T2/1 5 0, thenX2 does not causeX1; otherwise,

it is causal. In practice, a significance test needs to be done.

An objective here is to find a practical way to normalize

the abovementioned IF. As Liang (2015) stated, this may

be not as simple as it seems to be. We first need to get

back to its original derivation. Given a two-dimensional

dynamical system dX/dt5F(X, t)1B(X, t) _W, where _W

is a 2D vector of white noise, and F and B can be any

nonlinear functions of X, Liang (2008) has proved that

the rate of change of the marginal entropy H1 of X1 is

dH
1

dt
52E

�
F
1

› logr
1

›x
1

�
2

1

2
E

�
g
11

›2 logr
1

›x21

�
, (2)

where E represents mathematical expectation, r1 is the

marginal density ofX1, and gij 5�kbikbjk. The first term

on the right-hand side of Eq. (2) yields

2E

�
F
1

› logr
1

›x
1

�
52E

�
1

r
1

›(F
1
r
1
)

›x
1

2
›F

1

›x
1

�

5E

�
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1

›x
1

�
2E

�
1

r
1

›(F
1
r
1
)

›x
1

�
.

Substitution of

T
2/1

52E

�
1

r
1

›(F
1
r
1
)

›x
1

�
1

1

2
E

�
1

r
1

›2g
11
r
1

›x21

�

(adapted from Liang 2008) into Eq. (2) yields

dH
1

dt
5E

�
›F

1

›x
1

�
1T

2/1
1

�
2
1

2
E

�
1

r
1

›2g
11
r
1

›x21

�

2
1

2
E

�
g
11

›2 logr
1

›x21

��
.

The right-hand side has three terms—that is, the change

of H1 due to X1 itself, the rate of information flow from

X2 to X1, and the stochastic effects Hnoise
1 —where

2
1

2
E

�
1

r
1

›2g
11
r
1

›x21

�
2

1

2
E

�
g
11

›2 logr
1

›x21

�
5

dHnoise
1

dt
.

In the case where F5 f1AX1BBT with f5( f1, f2)
T,

A5 (aij)i,j51,2, and B5 (bij)i,j51,2, which are constant

vectors/matrices, the distribution of the state variables

will keep being Gaussian, provided that they are origi-

nally Gaussian (see Liang 2014). So, we may let

r
1
5

1ffiffiffiffiffiffi
2p

p
s
1

exp

"
2
(x

1
2m

1
)2

2s2
1

#
.

It is easy to obtain (Liang 2015)

dHnoise
1

dt
5

1

2

g
11

s2
1

. (3)

We define jT2/1j1 jdHnoise
1 /dtj as the normalizer, which

differs from that in Liang (2015) in that the term

jE(›F1/›x1)j is taken out. This makes sense, since that

term measures the contribution from X1 itself and that

could be the reason why the resulting relative causality

in Liang (2015) is too small. With the modified nor-

malizer, T2/1 can be normalized as follows:

tB2/1 5
abs(T

2/1
)

abs(T
2/1

)1 abs
dHnoise

1

dt

�
.

� (4)

Clearly, tB2/1 measures the importance of the information

flow from X2 to X1 in comparison to other stochastic

processes. For readers’ easy convenience, the step-by-step

computation of tB2/1 is given in algorithm 1 [a matrix

laboratory (MATLAB) implementation of algorithm 1 is

available online; https://cn.mathworks.com/matlabcentral/

fileexchange/62471-the-normalized-information-flow].

Moreover, to demonstrate the effectiveness of tB2/1, several

simulation experiments have been performed in appendix

B. Liang’s (2015) original IF normalization, written as tL2/1,

and the normalized transfer entropy (NTE) by Duan et al.

(2013) are also included for comparison.

1) Algorithm 1
Input: Two time series X2 and X1.
Step 1: Calculate the rate of information
flow T2/1 from X2 to X1 using Eq. (1).
Step 2: Estimate the parameters of the two-
dimensional dynamicalsystemF5 f1AX1BBT:

a11 ’
C22C1,d1 2C12C2,d1

detC
, a12 ’

2C12C2,d1 1C11C2,d1

detC

and
f1 ’E( _X1)2 a11E(X1)2 a12E(X2).

Step 3: Compute the maximum likelihood
estimator of g11:

g11 ’Dt � E[( _X1 2 f1 2 a11X1 2 a12X2)
2].

Step 4: Substitute C11 for s2
1.

Step 5: SubstitutionofC11 and g11 intoEq.(3)
yields the rate of the stochastic effect
dHnoise

1

dt
.

Step 6: Calculate the normalization of T2/1

based on Eq. (4).

Output: tB2/1.
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b. Inference using fuzzy graph

After the main climate factors causing TCs are de-

termined with algorithm 1, a seasonal forecast of TC

genesis can be made using BNP-FG (Bai et al. 2017),

which is introduced henceforth.

Let X5 fxInputjxInput 2 R
g , Input5 1, . . . , gg and

Z5 fzjz 2 Rg denote the random variables of interest,

whereX is the input (ENSOandPDO indices, etc.) andZ is

the output (e.g., seasonal TC number). Let (xInput, z)5
f(xInputi , zi)ji5 1, 2, . . . , mg be a set of observations on

R
g11, where x � X and z � Z. Suppose that Uand V are

two fuzzy sets of X and Z, respectively; that is to say,

8>>>>><
>>>>>:

U5

2
4p̂U

(x
Input
i juInput

a )

u
Input
a

, a5 1, 2, . . . ,n
U

3
5

V5

�
p̂
V
(z

i
jy

b
)

y
b

, b5 1, 2, . . . , n
V

� ,

where p̂U(x
Input
i juInput

a ) and p̂V(zijyb) are, respectively,

their membership functions in the form of conditional

probabilities, with (uInput
a , yb) as an illustrating point. More

details are discussed in algorithm 5 of Bai et al. (2017).We

can then construct the information gain of (uInput
a , yb) as

q
ab
(x

Input
i , z

i
)5 P

g

Input51

p̂
U
(x

Input
i juInput

a ) � p̂
V
(z

i
jy

b
) . (5)

Let the sum of the information gain be

Q
ab
5 �

m

i51

q
ab
(x

Input
i , z

i
), (6)

which consists of the information matrix (Huang 2001)

Q5
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1,u

2
1, . . . ,u

g
1

u1
2,u

2
2, . . . ,u

g
2

..

.

u1
nU
, u2

nU
, . . . ,ug
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y
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⋯ y
nV0

BBBBBBB@
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Q
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1nV

Q
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Q
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⋯ Q
2nV

..

. ..
. ..

. ..
.

Q
nU1

Q
nU2

⋯ Q
nUnV

1
CCCCCCCA
. (7)

According to the theory of factor space (Wang 1990),

which discusses how to normalize the information ma-

trix appropriately, we use8<
:

R5 fr
ab
g
nU3nV

5 fr(uInput
a , y

b
)g

nU3nV

r
ab
5Q

ab
/s
b

s
b
5 max

1#a#nU

Q
ab

(8)

to produce a normalized information matrix, that is, the

fuzzy relation matrix R,

R5

u1
1, u

2
1, . . . , u

g
1

u1
2, u

2
2, . . . , u

g
2

..

.

u1
nU
,u2

nU
, . . . , ug

nU

y
1

y
2

⋯ y
nV0

BBBBBB@

r
11

r
12

⋯ r
1nV

r
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r
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⋯ r
2nV

..

. ..
. ..

. ..
.

r
nU1

r
nU2

⋯ r
nUnV

1
CCCCCCA

. (9)

To calculate the output fuzzy set B, we first use A to

denote the input fuzzy set

§
A
(uInput

a )5 �
nU

c51

q

u
Input
c

, q5

�
1, c5 a

0, c 6¼ a
. (10)

Based on the fuzzy inference formula,

B5A+R
p
. (11)

Here the operator + signifies the maximum–minimum

fuzzy composition rule,

§
B
(y

b
)5 max

u
Input
a 2U

fmin[§
A
(uInput

a ), r(uInput
a , y

b
)]g, y

b
2 V ,

(12)

where r(uInput
a , yb) 2 (0, 1]. Thus, we can obtain

§
B
(v

b
)5 max

u
Input
a 2U

fr(uInput
a , y

b
)g. (13)

Finally, the gravity center of the fuzzy set is generated as

the output,

~z5
�
nV

b51

y
b
§
B
(y

b
)

�
nV

b51

§
B
(y

b
)

. (14)

In general, we use the given sample (x, z) and il-

lustrating points (ua
i , yb) to construct a relationship

between the input and the output in the following

form:

f (x
Input
i , z

i
,uInput

a , y
b
)5 ~z .

x
Input
i 2 x, z

i
2 z; a5 1, 2; . . . ; n

U
,b5 1, 2; . . . ; n

V
,

If x0i 5 uInput
a , then z0 5 ~z ,

where x0i represents the values of selected climate

indices in a certain year when we want to know its TC

genesis number.
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4. Climate influence on western North Pacific
tropical cyclone genesis

We first compute the causal relations between the TC

numbers and a variety of climate factors. The whole pro-

cedure follows algorithm 1 together with an examination

of the statistical significance of the resulting NIF tBCol,/Row

(i.e., if tBCol,/Row $ 1%, and if the IF is significant at the

5% confidence level; Liang 2015). The results are tabu-

lated in Table 1. This section is a summary of the results.

Note that the direction of the causality or information flow

in the table is from the column index to the row index.

As is clearly seen, most of the NIFs are significant

(as highlighted) except QBO, which generally agrees

with previous studies mentioned in the literature. For

the western cluster (WC) time series—that is, the first

row in Table 1—the NIF values vary from 0.3605% to

26.1865%. The maximum is tBENSO/C1TC, in agreement

with Chia and Ropelewski (2002), who claimed that

ENSO is a major factor in determining the seasonal TC

mean genesis positions. Second to it is tBPDO/C1TC. This is

consistent with Liu and Chan (2008), who found that

PDO displays a dipole-like structure on the 500-hPa ge-

opotential height anomaly map. Strong easterly anoma-

lies tend to steer TCs toward the west.

From the second row of the table, the variability in the

eastern cluster (EC) seems to be largely tied to, aside

from ENSO and PDO, WPSH. WPSH generally moves

northward in June, reaching its northernmost position

near 408N in August and September, and withdraws in

October. When it retreats from the South China Sea

(SCS), the monsoon westerly winds penetrate from the

Indian Ocean to the SCS, the Philippine Sea, and the

western Pacific, which may be more favorable for TC

genesis over theWNP (Frank 1987). Themost interesting

information is found in the last two columns of Table 1.

These values validate the work of Chia and Ropelewski

(2002), who showed that the strengthened (weakened)

WPSH and the enhanced (reduced) monsoon trough in

the Philippine Sea lead to an eastward (westward) dis-

placement of the major TC genesis pattern; this is also

consistent with the ENSO composites of Wang (1995).

Because climate science correlation analysis may be a

primary approach for causality detecting, we also compute

the correlation coefficients between thepairs for comparison

purposes. The results are shown in Table 2. Most of the

results are not significant, except those with ENSO and

PDO. This suggests that correlation analysis should not be a

prior choice for predictor selection in climate science. In

other words, although correlation analysis may help select

the proper climate factors with the largest correlation co-

efficients, it cannot display the inner links between some

certain climate indices and theWNP TCs. For example, the

WNP SST should be an important climate index for influ-

encing TCs over the WNP; however, correlation analysis

cannot always correctly validate it (see Table 2). In contrast,

at the same statistical significance level, we can obtain the

cause–effect relationbetween theevents of interest using the

new NIF without computational complexity.

5. Prediction of annual TC activity over the WNP

To achieve acceptable prediction performance, we first

get two ranking lists of climate indices ordered by the

values of NIF and correlation coefficients based on

Tables 1 and 2, respectively. Then, as recommended by

Song et al. (2013), we select Top-k factors from the two

ranking lists, where k5
ffiffiffiffiffi
m

p � logm and m is the number

of potentially selected indices. In this study the number of

climate factors is eight, then k 5 5. Thus, the common

indices in the two Top-k ranking lists are chosen as the

final predictors. Following this procedure, ENSO, PDO,

and WPSH are the three most important predictors

causing TCs in the western cluster; ENSO, PDO, and

monsoons are the major ones for the eastern cluster.

Therefore, in this section, we analyze the prediction ca-

pability of BNP-FG in coordination with these selected

climate influences and compare it with the Poisson re-

gression, which is a common approach in climatology.

a. Experiment 1: Prediction of the annual TC genesis
in the eastern region of the WNP

Following a general rule for forecasting exercises,

80% of the sample is used for training and the rest is

used for validation. Therefore, we train BNP-FG with

data from 1970 to 2006 and make predictions from 2007

to 2016 (it should be noticed that the size of the sample is

small). A new framework is presented here to illustrate

the step-by-step implementation of BNP-FG.

TABLE 1. NIF tBCol,/Row between TC genesis number and predictors (%). Boldface font indicates statistically significant values at the

5% level.

tBCol,/Row WNP SST EIO SST ENSO PDO QBO ZVWS WPSH Monsoon

WC 8.743 9.626 26.187 21.604 0.603 1.887 13.949 13.094

EC 7.089 1.212 16.237 13.189 0.306 7.553 11.304 10.297
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Step 1: Let the indices of ENSO, PDO, and WPSH,

and the recorded TC genesis numbers measured

from 1970 to 2006 be

(xInput, z)5 f(x1i , x2i , x3i , zi)j(21:0, 1:0,20:3, 9),

3(20:9, 1:4, 0:5677, 12), . . . g .

Step 2: According to the maximum and minimum

values of xInput and z in Fig. 2, let the illustrating

points (uInput
a , yb) be8><

>:
fu1

aju1
a 521:6: step: 2:2, step5 0:1, a5 1, 2, . . . , 39g

fu2
aju2

a 522:2: step: 1:3, step5 0:1, a5 1, 2, . . . , 36g
fu3

aju3
a 522:7: step: 1:8, step5 0:1, a5 1, 2, . . . , 46g

fy
b
jy

b
5 0: step: 15, step5 1, b5 1, 2, . . . , 16g

.

Step 3: Based on algorithm 5 of Bai et al. (2017), the

membership functions p̂U(x
Input
i juInput

a ) and p̂V(zijyb)
can be computed.

Step 4: Then, the fuzzy relationship matrix R can be

computed using Eqs. (5)–(9).

Step 5: Recalling Eqs. (10)–(14), the TC genesis

number in response to every possible xInput

can be inferred. We take the prediction for year

2016 as an example. We know that (x120162197011547 ’
20:8, x247 ’ 1:1, x347 ’ 0:7) in 2015 fromFig. 2.We use

Eq. (12) to obtain

§
A
[(20:8, 1:1, 0:7)]5

0

(21:6,22:2,22:7)
1⋯

1
1

(20:8, 1:1, 0:7)
1⋯1

0

(2:2, 1:3, 1:8)
.

Next, based on the

Num5 [0:72 (22:7)]/0:13 363 391 [1:12 (22:2)]/0:1

3 391 [20:82 (21:6)]/0:11 15 49 032

-th row of R and Eq. (13), we compute

§
B
(y

b
)5

1:0970e24

0
1

0:0029

1
1

0:0197

2
1⋯1

0:4716

14

1
0:4410

15
.

Finally, we calculate the gravity center of the output

fuzzy set as the predicted value using Eq. (14),

~z5
1:0960e24 3 01 0:00293 11 0:01973 21⋯1 0:47163 141 0:44103 15

1:0960e24 1 0:00291 0:01971⋯1 0:47161 0:4410

510:3085,

which is nearly the same as the true number of TC

genesis in 2016 (see Fig. 3a).

Following the steps given above, the results of BNP-

FG for TC genesis forecasting over the WNP can be

obtained (see Fig. 3a). Figure 3a shows that BNP-FG

can capture the decreasing trend in 2007–08, the in-

crease in 2008–09, the drop in 2010, the increasing pat-

tern in 2011–15, and the drop in 2016. The mean

absolute percentage error (MAPE; Caron et al. 2015)

and the root-mean-square error (RMSE; Caron et al.

2015) are also employed as objective functions to cali-

brate the new model (see Table 3). It should be noted

that in this section we discuss the results based on only

the JTWC best-track data. Obviously, the BNP-FG

performs rather satisfactorily, with an MAPE value of

19.05% and an RMSE value of 1.5233. One of the most

common models to estimate the relation between ob-

jects of interest in climate science is Poisson regression

(PR). We hence also perform PR for comparison. We

use the ‘‘glmfit’’ and ‘‘glmval’’ functions in the toolbox

of MATLAB to obtain the prediction of TC genesis

numbers in 2007–16. The results are displayed in Fig. 3a.

From the figure it is obvious that BNP-FG performs

better than PR: BNP-FG outperforms PR by about

21.35% and 9.32% in terms of MAPE and RMSE re-

ductions, respectively. Thismay be attributed to samples

containing insufficient information for PR to model the

interannual variability of TC geneses.

TABLE 2. Correlation R between TC genesis number and predictors. Boldface font indicates statistically significant values at the 5% level.

R WNP SST EIO SST ENSO PDO QBO ZVWS WPSH Monsoon

WC 16.632 18.654 262.906 252.519 3.237 34.182 223.249 241.529
EC 223.100 229.206 50.441 49.199 23.415 11.733 44.555 211.082
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b. Experiment 2: Prediction of the interannual TC
genesis in the western region of the WNP

As in experiment 1, in step 1 the ENSO, PDO, and

monsoon indices and the TC numbers in the eastern

cluster are selected as the input. Figure 3b shows the

observed and reconstructed TC number using different

models. Clearly BNP-FG still provides better pre-

dictions than PR, with the best MAPE and RMSE re-

ductions by 14.53% and 1.5224, respectively. From this

we see a strong prospect for the prediction of the in-

terannual variability of the WNP TC numbers from

limited information using BNP-FG.

c. Experiment 3: Prediction of the interannual TC
genesis in the whole WNP using data from CMA
and JMA

In this experiment we repeat the abovementioned

procedures using the data from CMA and JMA. The

results are presented in the supplementary material

(Tables S1–S4). We take the prediction of TC genesis

frequency for the WC based on the JMA datasets as an

example. First, we get two ranking lists of climate indices

ordered by the values of NIF and correlation coefficients

based on Tables S1 and S2, respectively. Then, we select

Top-k factors from the two ranking lists, where k 5 5.

The Top-k influences derived from Table S1 are ENSO,

PDO, WNP SST, WPSH, and EIO SST. The Top-k list

fromTable S2 only consists of ENSO, PDO, andWPSH,

since other factors’ correlations with TC genesis for WC

are insignificant at the 5% level. Thus, the common in-

dices in the two Top-k ranking lists are ENSO, PDO,

and WPSH as final predictors. The performances of

BNP-FG versus PR over the years 2007–16 for WC

using the selected predictors are shown in Fig. S1. Sub-

sequent to this example, we can obtain the results of

predicting TC genesis frequency for different regions

over the WNP based on JMA and CMA datasets (see

Figs. S2–S4). Details about the robustness analyses are

provided in Table 3. Although there are some discrep-

ancies between the selected predictors derived from

different datasets (it may be attributed to different

physical parameterization schemes and data assimila-

tion techniques utilized by the operational centers in TC

activity forecasting; Peng et al. 2017), the same conclu-

sion can be drawn from Table 3; that is to say, the pro-

posed algorithm mentioned above makes a competitive

tool for forecasting the number of WNP TCs when

measurements are insufficient.

6. Conclusions

In this study we introduced a recently formulated

rigorous causality inference method—that is, the in-

formation flow analysis method by Liang (2014)—into

the field of climate–cyclone interaction analysis and TC

forecasting, and developed for it a new normalization

scheme. We used the NIF to identify the cause–effect

relation between the western North Pacific tropical cy-

clone genesis and a variety of climate indices. Key fac-

tors are then selected for seasonal prediction. The

resulting causalities generally agree with previous

studies on the variability of the WNP TC genesis, but

they show a difference from those obtained through

correlation analysis, a techniquemost commonly used in

climate science. Although there are no significant cor-

relations between certain climate factors and TCs over

the WNP, with the new method the links between them

can be accurately revealed. In particular, the principal

influences of ENSO and PDOon theWNPTCvariability

have been reconfirmed through the causality analysis;

the secondary influences of WPSH and monsoon trough

have been faithfully detected as well, consistent with the

observation that they significantly affect the atmospheric

TABLE 3. Skill scores (in terms of MAPE and RMSE) of

different models for the ECs and WCs of the WNP ( boldface font

indicates the best performance).

PR BNP-FG

Datasets WC EC WC EC

JTWC MAPE 0.174 0.242 0.149 0.191
RMSE 1.596 1.680 1.522 1.523

CMA MAPE 0.223 0.233 0.209 0.209

RMSE 2.473 1.380 2.436 1.272

JMA MAPE 0.165 0.311 0.145 0.227
RMSE 2.332 2.577 2.286 2.080

FIG. 3. Seasonal forecasts for (a) eastern and (b)western clusters during

the 2007–16 period. Shown are PR (blue) and BNP-FG (red).
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circulation and result in atmospheric anomalies over the

WNP (Chia and Ropelewski 2002; Xie et al. 2009; Zhan

et al. 2011).

The second part of this study is the prediction of the

interannual variability of the TC numbers. Based on a

fuzzy graph that evolved from a new nonparametric

Bayesian process (BNP-FG), a robust model was pro-

posed for predicting the TC numbers in the western and

eastern regions over the WNP when the observations

are insufficient. The causal climate factors selected

through the aforementioned causality analysis are taken

as input for the prediction. It has been shown that the

prediction with the ENSO, PDO, andWPSH indices can

achieve acceptable performance for the western cluster;

for the eastern cluster, the prediction with ENSO, PDO,

andmonsoon taken into account is satisfactory. A classic

Poisson regression (PR) is also employed for compari-

son. It is observed that the new method significantly

outperforms PR. Although much is yet to be improved,

this newly proposed method—that is, the BNP-FG

model combined with the recently developed causality

analysis—provides a competitive tool for more reliable

TC genesis forecasts. We look forward to seeing more

applications in the future over the different basins.
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APPENDIX A

Glossary of the Acronyms

BNP

Nonparametric Bayesian process

CMA

China Meteorological Administration

CPC

Climate Prediction Center

EC

Eastern cluster

EIO

East Indian Ocean

ENSO

El Eiño–Southern Oscillation

FG

Fuzzy graph

IF

Information flow

JMA

Japan Meteorological Agency

MAPE

Mean absolute percentage error

MATLAB

Matrix laboratory

NIF

Normalized information flow

NOAA

National Oceanic and Atmospheric Admin-istration

NTE

Normalized transfer entropy

PDO

Pacific decadal oscillation

PR

Poisson regression

QBO

Quasi-biennial oscillation

RMSE

Root-mean-square error

SCS

South China Sea

SST

Sea surface temperature

TC

Tropical cyclone

TE

Transfer entropy

TS

Tropical storm

WC

Western cluster

WNP

Western North Pacific

WPSH

Western Pacific subtropical high

ZVWS

Zonal vertical wind shear

APPENDIX B

Several Numerical Simulations

In this section two numerical examples (adapted from

Duan et al. 2013) are adopted to validate tB2/1. A com-

parisonwith theNTE (Duan et al. 2013) and tL2/1 (Liang

2015) is also presented.
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Experiment 1: Linear equations

�
z
k11

5 0:8x
k
1 0:2z

k
1 y

1k

y
k11

5 0:6z
k
1 y

2k

, (B1)

where xk ;N(0, 1), y1k, y2k ;N(0, 1), and z0 5 3:2. We

have run 6000 steps, but the initial 3000 are discarded to

obtain two stationary series. The NIF and NTE between

each pair of x, y, and z are then computed and listed in

Table B1. Based on the NIF values, it can be seen that x

causes z and z causes y because tBx/z 5 0:698 and

tBz/y 5 0:975 are much larger than zero. This conclusion

is obviously consistent with Eq. (B1) from which it can

be seen that there is information delivery from both x to

z and z to y. Although tLz/y 5 0:172 can correctly un-

ravel the causal relation between z and y, it is hard to

detect the information flow pathway from x to z from

tLx/z 5 0:006.

In addition, based on Eq. (19) from (Duan et al. 2013),

it is noticed that NIT can achieve nearly the same per-

formance with ours (except for NTEx/y, because NIF

represents a direct cause–effect relation, while NTE can-

not distinguish whether the causality is direct or indirect).

But as Duan et al. (2013) stated, the computational com-

plexity for NTE is O[N2(k1 1 l1)
2], where N represents

the sample size, and k1 and l1 are the embedding di-

mensions of each pair of objects. In contrast, the compu-

tational complexity forNIF is onlyO(N), by far lower than

that for NTE.

Experiment 2: Nonlinear equations

8<
:

z
k11

5 12 2j0:52 (0:8x
k
1 0:4

ffiffiffiffiffi
z
k

p
)1 y

1k
j

y
k11

5 5(z
k
1 7:2)2 1 10

ffiffiffiffiffiffiffiffijx
k
jp
1 y

2k

, (B2)

where xk ;U(4, 5), y1k, y2k ;N(0, 0:05), and z0 5 0:2.

Following Eq. (B1), we compute all the values of NTE

and NIF, and list them in Table B2. Clearly, our NIF

here yields good results, considering the preset in-

formation flow pathways in Eq. (B2). Its performance is

obviously better than that of Liang (2015) and NTE

(Duan et al. 2013). Our normalization scheme for

Liang’s (2014) IF is hence successful.
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