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Recently, a rigorous formalism has been established for information flow and causality within dynam-
ical systems with respect to Shannon entropy. In this study, we re-establish the formalism with respect
to relative entropy, or Kullback-Leiber divergence, a well-accepted measure of predictability because
of its appealing properties such as invariance upon nonlinear transformation and consistency with the
second law of thermodynamics. Different from previous studies (which yield consistent results only
for 2D systems), the resulting information flow, say T , is precisely the same as that with respect
to Shannon entropy for systems of arbitrary dimensionality, except for a minus sign (reflecting the
opposite notion of predictability vs. uncertainty). As before, T possesses a property called principle
of nil causality, a fact that classical formalisms fail to verify in many situation. Besides, it proves to be
invariant upon nonlinear transformation, indicating that the so-obtained information flow should be
an intrinsic physical property. This formalism has been validated with the stochastic gradient system,
a nonlinear system that admits an analytical equilibrium solution of the Boltzmann type. Published
by AIP Publishing. https://doi.org/10.1063/1.5010253

To identify the causal relation between two dynamical
events is a fundamental problem in science and forms
a direct objective in many research fields. It is also an
important problem in philosophy, as it provides “guides
to higher understanding.”1 During the past years, it has
been realized that causality actually can be rigorously
derived in terms of information flow from first princi-
ples, rather than axiomatically proposed as an ansatz.2

The formalism with respect to Shannon entropy, or abso-
lute entropy as it is called, results in a concise formula
for causality measure, which, in the linear limit, unam-
biguously asserts that causation implies correlation, but
correlation does not imply causation. It has been validated
with many touchstone causal inference problems (e.g., Ref.
3). It has also been applied to real world systems with
remarkable success, among which are the reversing causal
direction between CO2 and global warming,4 and the long
forgotten story about “Seven Dwarfs” competing with
IBM the “Giant” for computer market.36 Considering that
the classical Granger causality is originally formulated as
predictability improvement, and that relative entropy pos-
sesses some appealing properties (such as consistency with
the second law of thermodynamics) and hence has been
proposed as a natural measure of predictability,5 in this
study, the above approach is extended to re-establishing
the formalism with respect to relative entropy. Different
from previous studies along this line, the resulting for-
mula is precisely the same as that with respect to absolute
entropy, except for a minus sign, reflecting the opposite
notion of predictability vs. uncertainty. Besides, it proves
to be invariant upon nonlinear transformation, indicat-
ing that the so-obtained causality measure represents an
intrinsic physical property.

a)Electronic address: sanliang@courant.nyu.edu

I. INTRODUCTION

Historically causality analysis is formulated (arguably)
by Granger6 as a statistical hypothesis testing problem. The
resulting metric and its varieties have been referred to as
Granger causality. On the other hand, a physical notion,
namely, information flow or information transfer, has been
under development in parallel for more than three decades
(e.g., Refs. 2 and 7–12) and has caught wide attention from
different disciplines.44 Now, it is generally agreed that infor-
mation flow provides a natural way of measuring causality;
indeed, it is this very logical association that makes the for-
mer gain such wide interest. Like Granger causality, there are
also different measures for information flow, the most popular
one being the axiomatically proposed transfer entropy.9 Inter-
estingly, transfer entropy and Granger causality turn out to be
equivalent for Gaussian variables (up to a factor of 2).13

For a formalism of causality to be faithful, the follow-
ing observational fact must be verified: If the evolution of
an event, say, X1, is independent of another one, X2, then
the causality from X2 to X1 is zero. This is actually the
only quantitatively stated fact about causality; Liang2 refers
to it as principle of nil causality. All the formalisms pro-
posed so far, including the classical Granger causality,14,15

transfer entropy,16–18 symbolic transfer entropy,19 and the
new ones such as the momentary information transfer,11 cau-
sation entropy,12 convergent cross mapping,20 predictability
improvement,24,25 etc., have been tested with this principle in
applications. Recently, a rigorous formalism has been devel-
oped for information flow within the framework of dynamical
systems. Rather than axiomatically proposed as an ansatz, it
is derived from first principles.2 Most of all, the principle of
nil causality appears in this formalism naturally as a proven
theorem. This line of work begins some 12 years ago with
two-dimensional (2D) deterministic systems.10 The basic idea
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can be best illustrated with a nonlinear system

dx1

dt
= F1(x1, x2, t), (1)

dx2

dt
= F2(x1, x2, t), (2)

with randomness limited to its initial condition. Here, the con-
vention in physics is followed which does not distinguish
random and deterministic variables; in statistics, they are usu-
ally differentiated with upper-case and lower-case symbols.
Suppose we are about to find the information flow from x2 to
x1. We essentially need to check how the marginal entropy of
x1, written H1, evolves. Here by entropy or Shannon entropy
we mean differential Shannon entropy; throughout this paper,
we will keep this convention unless confusion may arise. This
evolution could be driven by two different mechanisms: the
internal mechanism due to x1 its own and the external influ-
ence from x2. The latter is the very information flow from

x2. If we write the former as
dH∗

1
dt and the latter as T2→1, then

dH1
dt = dH∗

1
dt + T2→1. Now the problem is converted into find-

ing dH∗
1 /dt, since, given a deterministic system, there is a

Liouville equation for the probability density function (pdf),
and hence dH1/dt can be obtained. In Ref. 10, dH∗

1 /dt is
acquired through an intuitive argument based on a concise law
established therein:

dH

dt
= E(∇ · F), (3)

where H is the joint entropy of (x1, x2), F = (F1, F2), ∇ is the
gradient operator with respect to (x1, x2), and E signifies math-
ematical expectation. With this, Liang and Kleeman10 argue
that

dH∗
1

dt
= E

(
∂F1

∂x1

)
.

Subtraction of this from dH1/dt then follows the rate of
information flow from x2 to x1:

T2→1 = −E

(
1

ρ1

∂F1ρ1

∂x1

)
, (4)

where ρ1 is the marginal density of x1. We remark that
this setting is rather generic; the only assumption is the
differentiability of the vector field (F1, F2).

Equation (4) is later on rigorously proved21,22 and has
been remarkably successful. Particularly, it possesses a prop-
erty which is later on realized to be the very principle of nil
causality. (That is to say, within this framework, the principle
of nil causality is no longer an issue.) The same approach has
been extended to formulating the information flow between
two subspaces.23 This formalism, however, is only for 2D
deterministic systems. For systems with more than two com-
ponents, the above intuitive argument does not work anymore.
Even for a 2D system with stochasticity, this does not work,
either, because no such a simple law as (3) exists. The gener-
alization to multidimensional stochastic systems has just been
fulfilled; see Ref. 2.

The Liang-Kleeman formalism is with respect to Shan-
non entropy, or absolute entropy as it is called. In information
theory, there is another quantity, namely, relative entropy or

Kullback-Leibler divergence, which has been shown advan-
tageous over Shannon entropy in that it possesses some
appealing properties such as invariance upon nonlinear trans-
formation, and in the context of Markov chain, consistency
with the second law of thermodynamics (e.g., Refs. 5, 26,
and 27). It therefore has been proposed as a better measure
of predictability5 as compared to Shannon entropy or absolute
entropy.43 We hence examine in this study how the problem
may be re-formulated with respect to relative entropy. The dif-
ficulty is, even with a 2D deterministic system (1)–(2), there
is no such nice law as (3) for Kullback-Leibler divergence.
Previously, this was examined in Ref. 28 within the early
version of this framework,21,22 which results in a consistent
information flow for 2D systems, but a different one for sys-
tems with dimensionality greater than 2 (though similar in
form). As we have fulfilled a rigorous formalism in Ref. 2
for systems with both stochasticity and multi-dimensionality,
one naturally wonders how this may result within the updated
framework. This makes the major objective of this study. The
resulting flow/transfer will be referred to as information flow
with respect to relative entropy, or simply information flow
when no confusion arises. In the following, we first take a
brief stroll through the recent rigorous formalism (Sec. II),
then do the derivation (Sec. III). An application is demon-
strated in Sec. IV with a nonlinear stochastic system which
possesses an analytical equilibrium solution. This study is
summarized in Sec. V.

II. A STROLL THROUGH THE RECENT DEVELOPMENT
OF THE RIGOROUS FORMALISM WITH RESPECT TO
SHANNON ENTROPY

As mentioned above, causality forms the key to infor-
mation flow, and information flow is the logical measure of
causality. Since information flow is a real physical notion (not
just something in statistics), (arguably) it should be formu-
lated on a rigorous footing,2,3,29 rather than be axiomatically
proposed as an ansatz (such as the existing metrics). The fol-
lowing is a brief presentation of the main results of such a
rigorous formalism.

Consider a dynamical system

dx
dt

= F(t; x)+ B(t; x)ẇ, (5)

where x and F are n-dimensional vector, B is an n × m matrix,
and w is an m-vector of standard Wiener process (ẇ is a vec-
tor of white noise). Note that B can be a function of both x
and time t. Throughout this study, F and B are assumed to be
differentiable in x and t. We have the following theorem:2

Theorem II.1. For the dynamical system (5), the rate of
information flowing from X2 to X1 is

T2→1 = −
∫

Rn
ρ2|1

∂(F1ρ\2)
∂x1

dx + 1

2

∫
Rn
ρ2|1

∂2(g11ρ\2)
∂x2

1

dx,

(6)
where E stands for mathematical expectation, and ρ1 =
ρ1(x1) is the marginal probability density function (pdf) of
X1, ρ2|1 the conditional pdf of X2 on X1, ρ\2 = ∫

R
ρdx2, and

g11 = ∑m
j=1 b1jb1j.
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Ideally if T2→1 = 0, then X2 is not causal to X1; other-
wise, it is causal (for either positive or negative information
flow).

Corollary II.1. When n = 2,

T2→1 = −E

[
1

ρ1

∂(F1ρ1)

∂x1

]
+ 1

2
E

[
1

ρ1

∂2g11ρ1

∂x2
1

]
. (7)

In the absence of noise, this is precisely Eq. (4), the result
based on the heuristic argument in Ref. 10.

The information flow (6) [and hence (7)] possesses a nice
property:

Theorem II.2. (Principle of nil causality) If in the system
(5) both F1 and g11 are independent of X2, then T2→1 = 0.

Note this is the very principle of nil causality, an obser-
vational fact that defies the classical formalism in many situ-
ations. But, remarkably, here it appears as a proven theorem!
For its proof, refer to Ref. 2.

In the case when only two time series are given, the
causality between them can be estimated using maximum
likelihood estimation.3

Theorem II.3. Given two time series X1 and X2, under
the assumption of a linear model with additive noise, the max-
imum likelihood estimator (mle) of the rate of information
flowing from X2 to X1 is

T̂2→1 = C11C12C2,d1 − C2
12C1,d1

C2
11C22 − C11C2

12

, (8)

where Cij is the sample covariance between X1 and X2, and
Ci,dj is the sample covariance between Xi and a series derived
from Xj using the Euler forward differencing scheme: Ẋj,n =
(Xj,n+k − Xj,n)/(k�t), with k ≥ 1 some integer.

This result is important in that it bridges the gap between
theory and real applications. Considering that in history there
is a long-standing debate over correlation versus causation,
the above may also be written in terms of linear correlation
coefficients. A direct corollary is that, in the linear sense,3

Causation implies correlation, but correlation does not imply
causation.

Causality can be normalized so as to reveal the relative impor-
tance of a causal relation; see Ref. 36 for details. Also,
statistical significance test can be performed for Eq. (8), which
is referred to Ref. 3.

The above formalism has been validated with touchstone
problems in causal inference. For example, the anticipatory
system problem described in Ref. 30 turns out to be straight-
forward with the concise formula (8), though it is highly
nonlinear. More validations have been evidenced in different
applications with benchmark systems such as baker transfor-
mation, Hénon map, Kaplan-Yorke map,31 Rössler system,32

truncated Burgers-Hopf system,33 etc.; see Ref. 2 for these
examples.

The formalism has also been put to application with
success to many real world problems. These include the El
Niño-Indian Ocean Dipole relation study,3 tropical cyclone
genesis prediction,34 near-wall turbulence study,35 finan-
cial time series analysis,36 regional and global climate
change,4,37,38 to name but a few. Among them stands out the
causality study between CO2 and global warming.4 It is found

that, during the past century, indeed CO2 emission drives the
recent global warming; the causal relation is one-way, i.e.,
from CO2 to global mean atmosphere temperature. More-
over, the one-way causality is not homogeneously distributed,
with much enhanced warming over drylands, just as reported
in different previous studies.39 However, on a paleoclimate
time scale (1000 years or above), the causality is completely
reversed: it is global warming that causes CO2 concentration
to rise!

Another application,36 among many interesting ones, is
regarding the relation between the two corporations IBM and
GE, using the time series of US stocks downloaded from
YAHOO!
finance . It is found that their causal relation generally varies

with time. On the whole, the causality seems to be insignif-
icant, but if we do a running time analysis, there appears
a strong, almost one-way causality from IBM to GE (i.e.,
|TIBM→GE| � |TGE→IBM |) in the 1970s, starting from 1971.
This abrupt one-way causality rise reveals to us an old story
about “Seven Dwarfs and a Giant” which has almost been
forgotten: In the 1950s–1960s, GE was believed to be the
biggest computer user outside the U.S. Federal Government;
to avoid relying on IBM the computer “Giant”, it together
with six other companies (“Seven Dwarfs”) began to build
mainframes. But in 1970, GE sold its computer division. So
starting from 1971, it had to rely on IBM again. That is why
there is such a jump in TIBM→GE from 1970 to 1971. While the
story has almost gone to oblivion, this finding, which is solely
based on a simple causality analysis of two time series with
Eq. (8), is really remarkable.

III. INFORMATION FLOW WITH RESPECT TO
KULLBACK-LEIBLER DIVERGENCE

A. Strategy for the derivation

Kullback-Leibler divergence,40 also known as relative
entropy, is defined as, for two joint probability density func-
tions ρ and q of x = (x1, x2, . . . , xn),

D = D(ρ||q) =
∫
ρ log

ρ

q
= Eρ log

ρ

q
, (9)

where the integral is over the whole sample space; in this
study, it is R

n. It can be used to measure the distance between
ρ and q. Let q be the initial or equilibrium pdf, Kleeman5

has established that it is a natural measure of predictability
for the dynamical system with which ρ evolves. Besides, dif-
ferent from Shannon entropy, D is invariant upon nonlinear
transformation and is in accordance with the second law of
thermodynamics. Likewise, the marginal relative entropy D1

for ρ1(x1) and q1(x1) is

D1 = D1(ρ1||q1) = Eρ1 log
ρ1

q1
. (10)

Now consider the stochastic nonlinear dynamical system (5).
Without loss of generality, it suffices to examine the infor-
mation flow from x2 to x1; for any other pair, say (xi, xj), we
may make a transformation by simply moving the two com-
ponents to the first two slots. Here what we need to study is
the evolution of the predictability of x1, i.e., dD1/dt. Note how
it differs from that with respect to H1. The involvement of q
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complicates the problem in that, even for a two-dimensional
deterministic system, there is no evolutionary law of D as (3)
and hence the heuristic argument used by Liang and Kleeman
in Ref. 10 does not work anymore (as mentioned in the intro-
duction). Following what we have done before in fixing the
problem (e.g., Ref. 2), dD1/dt can be exclusively decomposed
into two parts, one being the evolution of D1 with the effect
of x2 excluded, written

dD1\2
dt , another being the influence from

x2, i.e., the information flowing from x2. Symbolically this is

dD1

dt
= dD1\2

dt
+ TD

2→1, (11)

where TD
2→1 is the rate of information flow from x2 to x1

with respect to predictability. In the following, we will simply
denote it as T2→1 unless otherwise indicated.

The problem is hence changed to finding dD1
dt and

dD1\2
dt .

For any dynamical system, correspondingly there is a Fokker-
Planck equation governing the pdf of the state. From this
equation in principle, dD1

dt can be derived. The key is the

derivation of
dD1\2

dt . We will see this soon in Subsection III C.

B. Time evolutions of D and D1

The following are some laws on the evolution of
Kullback-Leibler divergence. For simplicity, we will sup-
press the subscript ρ in Eρ ; all expectations are henceforth
understood with respect to ρ unless otherwise noted.

Theorem III.1. Consider the dynamical system (5). Let
ρ, q, ρ1, and q1 be the probability density functions as intro-
duced in the preceding subsection, and suppose that they are
twice differentiable. Then

dD

dt
= −E(∇ · F)− E[F · ∇ log q] − 1

2
E[G : ∇∇ log q],

(12)

dD1

dt
= E

[
F1
∂(log ρ1/q1)

∂x1

]
+ 1

2
E

[
g11
∂2(log ρ1/q1)

∂x2
1

]
,

(13)

where G = BBT , with gij = ∑m
k=1 bikbjk being the entries.

Remark: Note when gij = 0, i.e., in the absence of
stochasticity, we have obtained these results in Ref. 28.
Also note that if q is another pdf co-varying with ρ, then
dD/dt = 0, as established in Ref. 42. But such a D is not the
predictability measure introduced in Ref. 5.

Proof. We here derive them from the Fokker-Planck
equation:

∂ρ

∂t
= −∇ · (Fρ)+ 1

2
∇∇ : (Gρ), (14)

where the double dot is defined such that, for two dyadics A
and B, A : B = ∑

i,j aijbji. So

dD

dt
= −dH

dt
−

∫
∂ρ

∂t
log qdx

= −E(∇ · F)+
∫

Rn

[
∇ · (Fρ)− 1

2
∇∇ : (Gρ)

]
log q dx,

where the concise formula10

dH

dt
= E(∇ · F) (15)

has been used. Integrate by parts, and (12) follows.
To derive (13), integrate the Fokker-Planck equation with

respect to x2,. . . , xn to get

∂ρ1

∂t
= −

∫
∂(F1ρ)

∂x1
dx2 · · · dxn + 1

2

∫
∂2g11ρ

∂x2
1

dx2 · · · dxn.

Following the same procedure as above, we arrive at (13). �

C. Time change of D1 with x2 frozen as a parameter

To arrive at
dD1\2

dt , the above approach is not through since
now the system has been modified with x2 frozen at time t and
hence there is no such a Fokker-Planck equation in the usual
sense for the corresponding pdf ρ1\2. We have to go back to
the basics such as Frobenius-Perron operator (cf. Appendix).
The following proposition gives the result:

Proposition III.1. For the system in Theorem III.1, the
time change of D1 with x2 frozen as a parameter is

dD1\2
dt

= E

[
F1
∂ log ρ1/q1

∂x1

]
+ E

[
g11
∂2 log ρ1/q1

∂x2
1

]

− E

[
1

ρ1

∫
Rn−2

∂F1ρ\2
∂x1

dx3 · · · dxn

]

+ 1

2
E

[
1

ρ1

∫
Rn−2

∂2g11ρ\2
∂x2

1

dx3 · · · dxn

]
, (16)

where ρ\2 = ∫
R
ρ(x1, x2, . . . , xn)dx2.

The proof is given in the Appendix.

D. Information flow with respect to relative entropy

Subtracting (16) from (13), we arrive at the informa-
tion flow from x2 to x1 with respect to predictability. This is
summarized in the following theorem.

Theorem III.2. For the system in Theorem III.1, the
information flow from x2 to x1 is

T2→1 = dD1

dt
− dD1\2

dt

= E

[
1

ρ1

∫
Rn−2

∂F1ρ\2
∂x1

dx3 · · · dxn

]

− 1

2
E

[
1

ρ1

∫
Rn−2

∂2g11ρ\2
∂x2

1

dx3 · · · dxn

]
(17)

=
∫

Rn
ρ2|1(x2 | x1)

∂F1ρ\2
∂x1

dx

− 1

2

∫
Rn
ρ2|1(x2 | x1)

∂2g11ρ\2
∂x2

1

dx, (18)

where g11 = ∑m
k=1 b1kb1k , and ρ\2 = ∫

R
ρdx2.

Interestingly, this is precisely the same as that with Shan-
non entropy, i.e., Eq. (6), except for a minus sign. This is
quite different from the previous studies along this line with
the early version of the formalism (e.g., Ref. 28), where only
for 2D systems the two are consistent. The nice properties of
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the Shannon entropy-based formalism, such as principle of
nil causality, disappearing effect with additive noise, etc., are
then inherited here.

Theorem III.3. The information flow in (17) or (18) is
invariant upon coordinate transformation of (x3, x4, . . . , xn).

Remark 1: Here we cannot make transformation for
x1 and x2 otherwise we would talk about information flow
between different events.

Remark 2: This asserts from an aspect that the so-
obtained T is an intrinsic physical property.

Proof. We first do the proof with a deterministic system.
Let � : R

n → R
n, x �→ ξ , such that

ξ1 = x1,

ξ2 = x2,

ξ3 = �3(x3, . . . , xn)

...
...

ξn = �n(x3, . . . , xn).

That is to say, here actually (x1, x2) are not involved in the
transformation. The original system dx/dt = F(x) is changed
to

dξ1

dt
= F1[�−1(ξ)]

dξ2

dt
= F2[�−1(ξ)]

d[�−1(ξ)]3

dt
= F3[�−1(ξ)]

· · · · · ·

where the components #3 − n are rather complex but we will
not need them. Let the Jacobian of � be J , then J is actu-
ally equal to the Jacobian of (�3, . . . �n), written J\1\2, which
is independent of (x1, x2). By the Frobenius-Perron operator
result, the density of ξ is ρξ (ξ) = ρ(x)|J−1| = ρ(x)|J−1

\1\2 |. By

(18), the information flow from ξ2 to ξ1, written T̃2→1, is

T̃2→1 =
∫
�(Rn)

ρ(ξ1, ξ2)

ρ1(ξ1)
· ∂{F1[�−1(ξ)]

∫
ρξ (ξ)dξ2}

∂ξ1
dξ

=
∫
�(Rn)

ρ(ξ1, ξ2)

ρ1(ξ1)

· ∂{F1[�−1(ξ)]
∫
ρ[�−1(ξ)]|J−1

\1\2 |dξ2}
∂ξ1

dξ

=
∫
�(Rn)

ρ(ξ1, ξ2)

ρ1(ξ1)
· ∂{F1[�−1(ξ)]

∫
ρ[�−1(ξ)]dξ2}

∂ξ1

· |J−1|dξ

=
∫

Rn

ρ(x1, x2)

ρ1(x1)
· ∂[F1(x)

∫
ρ(x)dx2]

∂x1
dx

= T2→1.

Likewise, the stochastic case can be proved. So the informa-
tion flow is invariant upon coordinate transformation. �

IV. AN APPLICATION TO THE STOCHASTIC GRADIENT
SYSTEM: THE DEPENDENCE OF RELATIVE CAUSAL
EFFECT ON STOCHASTICITY

As a preliminary application, we now examine how
stochasticity may affect the information flow and causality
within a dynamical system. The system we will be examin-
ing belongs to the class of stochastic gradient systems, which
have vector fields in a gradient form. We choose such a class
of systems because the corresponding equilibrium probability
density functions are of the Boltzmann type and can be explic-
itly obtained. For convenience, consider a simple stochastic
perturbation B = bI with I being the identity matrix and b a
tunable constant. The governing equation is thence

dx
dt

= F(x, t)+ bẇ,

F = −∇V ,

with V = V(x) some potential function. Correspondingly, the
Fokker-Planck equation (14) is

∂ρ

∂t
− ∇ · (ρ∇V) = ∇ ·

(
1

2
b2∇ρ

)
.

In the equilibrium state, ∂/∂t = 0. It is easy to obtain

ρ = 1

Z
e−2V/b2

, (19)

where Z is the normalizer (or partition function as is called
in statistical physics). Here, we consider a 3D case, with a
potential function

V = 1

2
(x2

1x2
2 + x2

2x2
3 + x2

1 + x2
2 + x2

3). (20)

This is the case which has been briefly examined in Ref. 2; we
hence avail us of that result (except for a minus sign). Shown
in Fig. 1 are some of the density distributions with different
stochastic perturbation amplitudes b.

The vector field F resulting from the potential function is

F1 = −x1x2
2 − x1, (21)

F2 = −x2x2
3 − x2x2

1 − x2, (22)

F3 = −x3x2
2 − x3. (23)

By the symmetry and the principle of nil causality, it is easy
to see that

T3→2 = T1→2,

T2→1 = T2→3,

T3→1 = T1→3 = 0.

And these have been verified in the computation in Ref. 2. We
hence only need to look at the three information flows: T2→1,
T1→2, and T3→1 (=0). By (18), the rate of information flow
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FIG. 1. Density distribution with the potential function (20) and stochastic perturbation amplitude b = 0.4 (top panel) and b = 1.0 (bottom panel). Here, the
numbers are not normalized.

from xj to xi is

Tj→i =
∫

R3
ρj|i(xj | xi)

∂Fiρ\j
∂xi

dx

− 1

2

∫
Rn
ρj|i(xj | xi)

∂2(b2ρ\j)
∂x2

i

dx.

For this 3D case, ρ\i = ρjk(xj, xk), with i, j, and k running on
the set (1, 2, 3) in a cyclic way. Since b is a constant, it is easy
to show that the second term on the right hand side is gone, as
proved in Ref. 29. However, this does not mean that stochastic
perturbation has no contribution; in fact, it plays a hidden role
by affecting the deterministic variables in the first term, and
that is what we want to examine here.

A remark on the computation. Theoretically, the sam-
ple space is R

3 but in computation we can only deal with a
finite domain. Let this domain be [−δ, δ] × [−δ, δ] × [−δ, δ].
Then to choose an appropriate δ and the spacing size �x for
discretizing the domain may be important in making the com-
putation efficient. As shown in Fig. 1, when b is small, to
adequately resolve the effective support in the sample space,
�x should be small. When b is large, δ should be chosen
largely to cover the whole domain. We hence consider only
a small range for b to vary: [0.3, 0.8]. In Ref. 2, a domain
[−5, 5] × [−5, 5] × [−5, 5] and a spacing size �x = 0.05
have been chosen. We redo the computation using δ = 2.5

and � = 0.05 and the results look similar. Note here our
results should differ from those in Ref. 2 by a sign. To avoid
confusion, we just show the absolute values. As displayed
in Fig. 2 (left), T3→1 (and T1→3) is identically zero, just as
expected. Both |T2→1| and |T1→2| increase with b; they have

FIG. 2. Rate of information flow (T) within a gradient system with the poten-
tial function (20). Shown here are the absolute values. (Units: nats per unit
time.)
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been validated in Ref. 2 in the context of thermodynamics (b2

functions like temperature).
An interesting observation is that, as b increases, the

relative role of x1 and x2 changes. At b = 0.4, |T2→1| =
0.736 × 10−2 is slightly larger than |T1→2| = 0.651 × 10−2;
when b < 0.4 |T2→1| is much larger. That is to say, as b is
small, x2 is more important to x1 than x1 is to x2. This is
understandable. In (21)–(23), F2 differs from F1 by a term
−x2x2

3; otherwise, x1 and x2 are symmetric, and hence, |T2→1|
should be the same as |T1→2| in the absence of stochastic-
ity. The addition of −x2x2

3 weakens the role of x1 to x2 hence
reduces |T1→2| (relative to |T2→1|).

This scenario changes when stochasticity becomes
significant. As b increases, |T1→2| exceeds |T2→1|: x1 becomes
more important to x2 that x2 is to x1. This is interesting as
usually one would expect that noise would take a share but
would not change the information flow structure. A detailed
explanation of how this may happen in general is beyond the
scope of this study. For this particular example, by the entropy
evolution laws,42 the positivity of x2

3 functions to reduce the
uncertainty of the system, and it then may weaken the noise
effect as well.

V. CONCLUDING REMARKS

Recently, a rigorous formalism has been established for
information flow and causality within dynamical systems with
respect to absolute or Shannon entropy. In this study, we
re-establish the formalism with respect to Kullback-Leibler
divergence or relative entropy, which is a well-accepted mea-
sure of predictability, and is advantageous over absolute
entropy in that it possess such nice properties as consistency
with the second law of thermodynamics.

For easy reference, here we rewrite the major result
(Theorem III.2) as follows. Consider an n-dimensional non-
linear stochastic system

dx
dt

= F(t; x)+ B(t; x)ẇ,

where F is a differentiable n-vector, w is an m-vector of stan-
dard Wiener process (ẇ is a vector of white noise), and B is a
differentiable m × m matrix. Let ρ be the probability density
function of x and write gij = ∑m

k=1 bikbjk , ρ\2 = ∫
R
ρ(x)dx2.

Then the rate of information flowing from x2 to x1 with respect
to relative entropy is

T2→1 = E

[
1

ρ1

∫
Rn−2

∂(F1ρ\2)
∂x1

dx3 · · · dxn

]

− 1

2
E

[
1

ρ1

∫
Rn−2

∂2
(
g11ρ\2

)
∂x2

1

dx3 · · · dxn

]
.

Different from the previous study along this line,28 this for-
mula is precisely the same as that with respect to Shannon
entropy [cf. (6); also see Ref. 2], except for a minus sign. The
nice properties of the Shannon entropy-based formalism, such
as principle of nil causality, disappearing effect with addi-
tive noise, etc., are inherited accordingly. Besides, we have
also established that the so-obtained T2→1 is invariant upon
nonlinear transformation of (x3, . . . , xn).

We have validated the formalism with a 3D stochastic
gradient system which, though nonlinear, has an analytical
solution of the Boltzmann type for its equilibrium state. As
expected, the above Tj→i can give in a precise sense the under-
lying causality. With the same system, it is found that the
causal influence of one component relative to another can
undergo a radical change with the introduction of white noise.

All in all, information flow as a real physical notion
can be rigorously derived from first principles, rather than
axiomatically proposed. We want to mention that the assump-
tion involved so far in the formulation is rather weak; only
differentiability for F and B is assumed. We expect that this
generic setting will allow it to find broad applications in
different fields.
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APPENDIX: PROOF OF PROPOSITION III.1

To begin, we first need to introduce the concept of
Frobenius-Perron operator, or F-P operator for short. By an
F-P operator, we mean a mapping41 P : L1(Rn) → L1(Rn)

corresponding to � : R
n → R

n, x �→ y, which takes ρ(x) to
ρ(y), such that, for any ω ⊂ R

n,

∫
ω

Pρ(x)dx =
∫
�−1(ω)

ρ(x)dx. (A1)

We also need the following result:

Eψ(y) = Eψ[�(x)], (A2)

for any differentiable function ψ : 
 → 
, with 
 the sam-
ple space (Rn here). Note that the expectation operator E on
the right hand side applies to a function of x; it is thence with
respect to ρ(x). On the left hand side E is with respect to
ρ(y) = Pρ, where P is the F-P operator associated with the
mapping �. See Ref. 2 (pp. 3–4) for a proof.

The proposition is about the derivation of
dD1\2

dt , i.e., the
Kullback-Leibler divergence of x1 with x2 frozen as a param-
eter instantaneously at time t. To prove, consider Eq. (5) on a
small interval [t, t +�t]. Euler-Bernstein differencing,41

x(t +�t) = x(t)+ F(t; x)�t + B(t; x�w). (A3)

To avoid confusion, write x(t +�t) as y, and reserve x for
x(t). We need to find

(P\2ρ)1 =
∫

Rn−2
P\2ρdx3dx4 · · · dxn,
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and its logarithm. By the result of Liang (2016) (see Ref. 2,
p.18, l. 1 from bottom),

log(P\2ρ)1(y1) = log ρ1\2(y1)

− �t

ρ1\2

∫
Rn−2

∂F1ρ\2
∂y1

dy3 · · · dyn

+ �t

2ρ1\2

∫
Rn−2

∂2g11ρ\2
∂y2

1

dy3 · · · dyn + o(�t).

So

D1\2(t +�t) = E log(P\2ρ)1(y1)− E log q1(y1)

= E log ρ1\2(y1)

− E

[
1

ρ1\2

∫
Rn−2

∂F1ρ\2
∂y1

dy3 · · · dyn

]
�t

+ 1

2
E

[
1

ρ1\2

∫
Rn−2

∂2g11ρ\2
∂y2

1

dy3 · · · dyn

]
�t

− E log q1(y1)+ o(�t).

The expectation on the right hand side is with respect to ρ at
t. Recall that ρ1\2 = ρ1 at time t, and in the second and third
terms y can be replaced by x with error going to higher order
terms, i.e.,

1

ρ1\2(y1)

∫
Rn−2

∂F1(y)ρ\2(y\2)
∂y1

dy3 · · · dyn

= 1

ρ1(x1)

∫
Rn−2

∂F1(x)ρ\2(x\2)
∂x1

dx3 · · · dxn + o(�t),

1

2

1

ρ1\2(y1)

∫
Rn−2

∂2g11(y)ρ\2(y\2)

∂y2
1

dy3 · · · dyn

= 1

2

1

ρ1(x1)

∫
Rn−2

∂2g11(x)ρ\2(x\2)
∂x2

1

dx3 · · · dxn + o(�t).

Besides,

log q1(y1) = log q1(x1 + F1�t + B1�w)

= log q1(x1)+ ∂ log q1

∂x1
(F1�t + B1�w)

+ 1

2

∂2 log q1

∂x2
1

B1�w�wT BT
1 + o(�t)

and notice that, by definition of the Wiener process,

E�w = 0,

E�w�wT = �tIm×m.

So

D1\2(t +�t) = E

[
log ρ1(x1)+ ∂ log ρ1

∂x1
(F1�t + B1�w)

+ 1

2

∂2 log ρ1

∂x2
1

B1�w�wT BT
1

]

− E

[
1

ρ1

∫
Rn−2

∂F1ρ\2
∂x1

dx3 · · · dxn

]
�t

+ 1

2
E

[
1

ρ1

∫
Rn−2

∂2g11ρ\2
∂x2

1

dx3 · · · dxn

]
�t

− E log q1(x1)− E

[
F1
∂ log q1

∂x1

]
�t

− E

[
g11
∂2 log q1

∂x2
1

]
�t + o(�t)

= D1(t)+ E

[
F1
∂ log ρ1/q1

∂x1

]
�t

+ 1

2
E

[
g11
∂2 log ρ1/q1

∂x2
1

]
�t

− E

[
1

ρ1

∫
Rn−2

∂F1ρ\2
∂x1

dx3 · · · dxn

]
�t

+ 1

2
E

[
1

ρ1

∫
Rn−2

∂2g11ρ\2
∂x2

1

dx3 · · · dxn

]
�t

+ o(�t).

Take the limit to get

dD1\2
dt

= lim
�t→0

D1\2(t +�t)− D1(t)

�t

= E

[
F1
∂ log ρ1/q1

∂x1

]
+ E

[
g11
∂2 log ρ1/q1

∂x2
1

]

− E

[
1

ρ1

∫
Rn−2

∂F1ρ\2
∂x1

dx3 · · · dxn

]

+ 1

2
E

[
1

ρ1

∫
Rn−2

∂2g11ρ\2
∂x2

1

dx3 · · · dxn

]
. �
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