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ABSTRACT

The interaction between the land surface and the atmosphere is of significant importance in the climate

system because it is a key driver of the exchanges of energy and water. Several important relations to heat

waves, floods, and droughts exist that are based on the interaction of soil moisture and, for instance, air

temperature and humidity. Our ability to separate the elements of this coupling, identify the exact locations

where they are strongest, and quantify their strengths is, therefore, of paramount importance to their pre-

dictability. A recent rigorous causality formalism based on the Liang–Kleeman (LK) information flow theory

has been shown, both theoretically and in real-world applications, to have the necessary asymmetry to infer

the directionality and magnitude within geophysical interactions. However, the formalism assumes statio-

narity in time, whereas the interactions within the land surface and atmosphere are generally nonstationary;

furthermore, it requires a sufficiently long time series to ensure statistical sufficiency. In this study, we remedy

this difficulty by using the square root Kalman filter to estimate the causality based on the LK formalism to

derive a time-varying form. Results show that the new formalism has similar properties compared to its time-

invariant form. It is shown that it is also able to capture the time-varying causality structure within soil

moisture–air temperature coupling. An advantage is that it does not require very long time series to make an

accurate estimation. Applying a wavelet transform to the results also reveals the full range of temporal scales

of the interactions.

1. Introduction

The land surface plays an essential role in the climate

system (e.g., Fischer et al. 2007; Miralles et al. 2014). A

number of studies have demonstrated that the land–

atmosphere interactions, especially soil moisture in-

teractions with the atmosphere, have the potential to

affect the occurrence of heat waves (Stéfanon et al.

2014), drought (Ciabatta et al. 2015; Roundy and Wood

2015), rainfall (Taylor et al. 2012; Tuttle and Salvucci

2015), and floods (Massari et al. 2014; Saini et al. 2016).

Therefore, predictability of climate extremes is ex-

pected to exist in the interactions of key processes

between the land and the atmosphere (Berg et al. 2014;

Zheng et al. 2015). In recent years, identifying the hot

spots of land–atmosphere interactions and quantifying

the magnitude of such effects on climate variations and

extremes have attracted a lot of attention (Casagrande

et al. 2015; Papagiannopoulou et al. 2017; Tuttle and

Salvucci 2015).

The approaches for quantifying land–atmosphere in-

teractions include mainly, among others, numerical ex-

perimentation and statistical diagnosis. In recent years,

many numerical studies have been conducted with the

aim of improving the understanding of land–atmosphere

interactions with a focus on soil moisture feedbacks on

the overlying atmosphere. Koster et al. (2004) and Guo

et al. (2006) identified the hot spots of soil moistureCorresponding author: Guojie Wang, gwang_nuist@163.com
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feedbacks on subsequent precipitation and air temper-

ature over the globe based on numerical experiments of

12 general circulation models (GCMs). Such feedbacks

were found to be strongest in the transitional regions

between dry and wet climates with, however, rather

significant discrepancies among the outputs from dif-

ferent GCMs. Fischer et al. (2007) simulated the Euro-

pean heat wave in the summer of 2003 and found the

heat anomalies in the Mediterranean region reduced by

about 40% if the interactions between the land and at-

mosphere were not adequately taken into account.

There also exist a number of other numerical studies

showing the importance of land–atmosphere interac-

tions for atmospheric prediction (Koster et al. 2004;

Miralles et al. 2014; Tuttle and Salvucci 2015).

Although numerical climate models offer a good al-

ternative for studying the land–atmosphere interactions

experimentally, significant discrepancies exist between

the results from different models due to the use of dif-

ferent parameterization schemes (Flato et al. 2013; Zhao

and Li 2015). Therefore, considerable efforts have also

been put into statistical approaches for identifying the

land–atmosphere interactions from observations: iden-

tifying where they exist as well as estimating their

magnitude (Miralles et al. 2012; Notaro 2008; Zhang

et al. 2008). A common practice is the use of time-lagged

correlation (Ford et al. 2015; Wu and Zhang 2015), even

though it is generally known that correlation does not

bear the required asymmetry and directedness to in-

dicate causality (Liang 2014). The latter implies that

correlation analysis does not show the direction of the

interactions. Thus, disentangling the direction of the

interactions among time series has been of interest for a

long time in many disciplines. Another potential prob-

lem with time-lagged correlation is that when the fore-

knowledge of the processes is not sufficient, it is very

difficult to differentiate a lag from an advance, espe-

cially, when the processes are periodic. Therefore, sev-

eral studies have been devoted to the development of

reliable statistical tools for this purpose (Daj�cman 2013;

Casagrande et al. 2015; Notaro 2008; Palu�s 2014; Papana

et al. 2016). The Granger causality, first suggested by

Clive Granger (Granger 1969), is one of the most widely

accepted tools for studying directed interactions, in

particular, the linear relations of cause and effect,

among time series. It has been applied successfully to

study the cause–effect relations between climate vari-

ables such as the soil moisture–precipitation interaction

(Tuttle and Salvucci 2015). More recently, a nonlinear

form of Granger causality based on a random forest

machine learning algorithm was proposed and used to

analyze the causal relations between several climate

factors and vegetation (Papagiannopoulou et al. 2017).

Another method that has gained much popularity is the

equilibrium feedback analysis (EFA), which was origi-

nally proposed by Frankingnoul and Hasselmann (1977)

for studying coupled systems within the climate. It has

since been applied to the study of soil moisture feed-

backs on precipitation to investigate the hot spots of soil

moisture–precipitation feedbacks over the globe using

various datasets (Notaro 2008). A spatiotemporal anal-

ysis tool called the coupled manifold is also used for this

purpose (Navarra and Tribbia 2005), although it is not

strictly defined in the concept of causality. It seeks a

solution for a system as a linear function of another

system, and has also been successfully applied to several

problems of land surface atmosphere interactions

(Catalano et al. 2016).

Recently, Liang (2014) proposed a rigorous non-

parametric formalism of causality measurement for

identifying the cause–effect relations between any given

time series, based on the theory of Liang–Kleeman (LK)

information flow (LK causality; Liang 2016). Compared

to other tools, the LK causality is rather easy to com-

pute, involving only the sample covariance of the given

time series. Additionally, since it is derived from first

principles and mathematically rigorous, it avoids spuri-

ous causalities that are sometimes found in the Granger

causal test and other statistical formalisms. Using a large

number of simulations, Liang (2014) showed that this

causality formalism is able to unambiguously obtain

predetermined causalities between the simulated time

series. Stips et al. (2016) used the LK causality to in-

vestigate the causal relations between global surface

temperature and the radiative forcing, finding that

greenhouse gases were the main causal drivers of the

recent warming, but this cause–effect direction was re-

versed on paleoclimate time scales. Among other ap-

plications of the Liang–Kleeman information flow in

recent years, Liang (2014) used it to investigate the

cause–effect relation between two climate modes, El

Niño and the Indian Ocean dipole (IOD), both of which

have been linked to some climate extreme and socio-

economic impacts. The LK causality is hence identified

to provide an easy but efficient tool for studying the

land–atmosphere interactions. However, it requires

stationarity for the time series in question. It is well

known that the land–atmosphere interactions vary with

seasons due to the changing boundary layer properties.

Therefore, there is a need to further develop the LK

causality in order to cope with time-varying properties

of land surface atmosphere interactions.

The Kalman filter is an established approach to ob-

tain the changing model parameters with time. It infers

parameters of interest from inaccurate and uncer-

tain observations by minimizing the mean-square error
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between the estimated parameters and the observations

(Grewal and Andrews 2001). It has been further de-

veloped into different forms and applied in both linear

and nonlinear problems (Ghorbanidehno et al. 2015;

Houtekamer and Zhang 2016; Kiani and Pourtakdoust

2014). We use the Kalman filter here to estimate the

time-varying parameters for the LK information flow-

based causal inference.

Many time series in geophysics contain dominant

periodic components, which can vary in both amplitude

and frequency over long periods. Such periodic com-

ponents sometimes act in the land–atmosphere in-

teractions, leading to signals in the frequency domain.

Identifying the signals of directed interactions in the

frequency domain may help to understand the un-

derlying mechanisms of land–atmosphere interactions.

Therefore, there is also a need to identify directed in-

teractions in the frequency domain. Wavelet analysis,

widely used in analyzing time series of geophysics

(Casagrande et al. 2015; Wang et al. 2017), is such a tool

to solve this problem by decomposing a time series into

time-frequency distribution.

In this study, the Liang causality formalism is in-

tegrated with the Kalman filter and wavelet analysis to

provide a statistical tool for investigating the land–

atmosphere interactions in the time-frequency domain.

Section 2 gives a description of the formalism, section 3

validates the formalism with synthetic models, section 4

applies it to a specific case study of land–atmosphere

interaction over China, and section 5 presents a sum-

mary and discussion of the formalism and its potential

applications.

2. The time-varying causal inference

a. Formalism of the information flow-based causality

Information flow, sometimes referred to as informa-

tion transfer in the literature, is essentially the transfer

of information through some processes between two or

more entities within a dynamical system (Liang 2013).

The transfer of information from a source to a receiver,

which may reflect a cause–effect relationship (i.e., who

drives whom) is a problem that can be found in many

disciplines such as neuroscience, financial economics,

climate interactions, and network dynamics, just to

mention a few. After more than 30 years of research, a

consensus has been reached that information flow is

logically associated with causation and bears implica-

tions of predictability and uncertainty propagation (see

Liang 2013 and references therein). Liang (2008, 2016)

hence argued that, in this way, causality can be rigor-

ously formulated, rather than axiomatically proposed as

an ansatz; particularly, the causality between two time

series can be easily obtained in a quantitative sense

Liang (2014). Recently, Liang (2016) found that cau-

sality is a real physical notion and can be rigorously

derived and quantified with the notion of the Liang–

Kleeman information flow (Liang 2008); particularly,

the causality between two time series can be easily ob-

tained in a quantitative sense (Liang 2014). The fol-

lowing is a brief introduction.

Consider a d-dimensional stochastic system

dX5F(X, t) dt1B(X, t) dW , (1)

where F is defined as the vector of drift coefficients, B5
(bij) is a matrix of stochastic perturbation coefficients,

and W is a vector of a Wiener process. If two compo-

nents, for instance,X1 andX2 are considered, the rate of

information flow fromX2 toX1, is the amount of entropy

contributed by X2 to the evolution of H1, the marginal

entropy of X1. This can be obtained by finding the total

rate of change of H1, minus the same change rate but

with the effect fromX2 instantaneously excluded. Liang

(2008, 2016) proved that for a 2D system,

T
2/1

52E

�
1

r
1

›(F
1
r
1
)

›x
1

�
1

1

2
E

"
1

r
1

›2(b2
11 1 b2

12)r1
›x21

#
, (2)

where r1 is the marginal probability density of X1, and

E is the mathematical expectation. For arbitrary di-

mensional system, the result is referred to Liang (2016).

A unique property of this measure of information flow

rate as obtained in Eq. (2) is its asymmetry (between

T2/1 and T1/2), and particularly, the ‘‘principle of nil

causality,’’ which states that, if the evolution of an event

is independent of another, then the causality from the

latter to the former is zero. Thus, ideally, a nonzero

T2/1 implies that X2 is causal to X1, where the magni-

tude of T2/1 is the strength of the causality. A zero

value strictly implies that X2 is not causal to X1. (In

practice, the statistical significance should be tested to

infer causality). Refer to Liang (2016) for a more for-

mally and quantitatively stated principle of nil causality,

which the Granger causality test and transfer entropy

analysis fail to meet in many situations (Granger 1980).

In the case of a linear system: F 5 f 1 AX, where f 5
(f1, f2)

T, A 5 (aij), B 5 (bij), then if originally (X1, X2)

has a bivariate normal distribution, it will always be so.

Given the mean m 5 (m1, m2)
T and covariance matrix

S 5 (sij), their evolutions are as follows:

dm

dt
5 f1Am, and (3)

dS

dt
5AS1SAT 1BBT . (4)
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When B 5 (bij) is constant, the last term of Eq. (2) dis-

appears. Substitution of

F
1
5 f

1
1 a

11
X

1
1 a

12
X

2
, and (5)

r
1
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2ps

1
)

p exp

"
2
(x

1
2m

1
)2

2s2
1

#
, (6)

into Eq. (2) for F1 and r1 produces, after a series of al-

gebraic multiplications (Liang 2014, 2008),

T
2/1

5
s
12

s
11

a
12
, (7)

where sij is derived by solving Eq. (4). The parameters f,

A, and B can be estimated through maximum likelihood

estimation; with them, the information flow from X2 to

X1 can be obtained in terms of covariances (Liang 2014):

T
2/1

5
C

12

C
11

2C
12
C

1,d1
1C

11
C

1,d1

C
11
C

22
2C2

12

, (8)

where Cij is the sample covariance between Xi and Xj,

Ci,dj the covariance between Xi and Xdj and a derived

series from Xj using the formula Xdj 5 [Xj(t 1 kDt) 2
Xj(t)]/(kDt), where Dt is the time step size, and k some

integer; see Liang (2014) for further details. Likewise,

the information flow from X1 to X2 can be obtained by

switching the indices:

T
1/2
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C

21

C
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C

2,d2
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C
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,

b. Kalman filter

From the above Eq. (8), estimating the causality in-

vokes an assumption of time stationarity for the com-

putation of the covariances. To tackle the challenge of

computing a time-varying causality based on Eq. (2)

and, particularly, its linear version [Eq. (7)] as rigorously

established by Liang (2008), a Kalman filter is em-

ployed. The main goal of using this Kalman filter ap-

proach is to estimate the required covariances at each

time step. Many studies have used the Kalman filter to

obtain covariance estimates (e.g., Asl and Pourtakdoust

2007; Gonzalez et al. 2014). AKalman filter includes two

parts: the estimation part, which calculates the state

estimate x, and the gain part, which computes the co-

variance of the state P.

The standard Kalman filter is formulated with a linear

stochastic system, shown here as

x
k
5Ax

k21
1Bu

k
1w

k21
,

y
k
5Hx

k
1 v

k
, (9)

where x is the system state vector, y is the measurement

vector, and u is the input vector. The parameters A, B,

andH are transitionmatrices of appropriate dimensions,

with v andw beingmutually independent and zero mean

measurement and process noise, respectively in this

case, and

E[w
k
wT

k ]5Q ,

E[v
k
vTk ]5R , (10)

where Q is the process noise covariance and R is the

measurement noise covariance. Just as in previous

studies, it was found that the estimation of Q and R was

quite difficult, especially forQ (Berg et al. 2014; Odelson

et al. 2006; Saha et al. 2011; Mohan et al. 2015), due to

our inability to observe the process being estimated.

Since the computation of the causality is based on

sample covariances, it is very important to ensure that the

estimated covariances are very accurate. Therefore, we

do not assume them to be constant in time, but we com-

pute them for each time step since in reality, they will not

remain constant but change.A common practice, which is

adopted here, is they are first obtained offline (outside of

the Kalman filter iteration) for each time step; the ob-

tained results are then used for further computations in

the iteration process as seen in Eqs. (12) and (14).

An updating equation is used to compute an a pos-

teriori state xk, an estimate that is a linear combination

of the weighted difference between the measurement

prediction Hxk and an actual measurement yk, and an a

priori x2k . Combining the a priori estimate and the

measurement data, we write xk as

x
k
5 x2k 1K

k
(y

k
2Hx2k ) . (11)

The statistically optimal Kalman gain Kk is calculated

to use in the correction stage. It minimizes the risk (loss)

of the estimate error covariance, defined as P 5 E[eeT],

which is the value of expectation of the squared mag-

nitude of the posterior state estimation error. The Kal-

man gain is computed as in the following:

K
k
5P2

k H
T(HP2

k H
T 1R)

21
. (12)

Hence, the updated P becomes the solution to the

equation below, using the characteristics of the mea-

surement noise in Eq. (9):

P
k
5 (12K

k
H)P2

k . (13)

The following projection equations of the state estimate

x and covariance P are used in the prediction stage,

x2k 5Ax
k21

1Bu
k
,

P2
k 5AP

k21
AT 1Q

k
.

(14)
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Within the gain loop of the standardKalman filter, the

Kalman gain, which is an error correction feedback of

the estimation loop, is estimated. An accurate gain,

therefore, provides accurate estimations of the state

parameter from round-off errors, a priori and noise es-

timation errors. Since no feedback exists in the gain

loop, it results in unchecked accumulated computer

round-off errors from the state variance–covariance

computation, which happens to be a parameter of im-

portance to this study. This creates numerical in-

stabilities and imprecision within the Kalman (optimal)

filtering process. Several studies have been committed

to solving these problems, and decomposition of the

covariance matrix (the process of breaking down a ma-

trix or its expression into an equivalent product of fac-

tors) has been proposed as direction to solving the above

mentioned problem (Roncero 2014; Sastry 1971).

Several methods of decomposition are available

from numerous studies (Bellantoni and Dodge 1967;

Gonzalez et al. 2014; Roncero 2014; Thornton 1976). In

this study, we employ the Bierman–Thornton algorithm

(see appendix A), which uses modified Cholesky factors

of the state variance–covariance matrix, since the

modified Cholesky decomposition has been found to be

more robust than the classical one (Maoudj et al. 2013).

It is acts as a square root filter, though it does not use any

square root operations in its implementation. However,

its ability to compute positive definite matrices, which

have a triangular matrix square root property, makes it

an optimal choice.

The LK causality formalism, as seen in Eq. (8), in-

volves sample covariances, which are usually directly

computed from given time series. We here are about to

estimate the covariances with our newly preferred esti-

mation methodology, that is, the square root Kalman

filter based on theBierman–Thornton algorithm (Bierman

and Thornton 1976). In this way, Eq. (8) and its converse

direction become

T
2/1t

5
P
12

P
11

2P
12
P

1,d1
1P

11
P

2,d1

P
11
P
22
2P2

12

,

T
1/2t

5
P
21

P
22

2P
21
P

2,d2
1P

22
P

1,d2

P
22
P
11
2P2

21

. (15)

where P is the resulting covariance matrix at each time

step of the iteration [Pk 5 (12KkHk)(U
2
k D

2
k U

2T
k )]. We

provide two formalisms of this time-varying causality,

both based on the Bierman–Thornton algorithm, but in

the second case, the transition matrix functions in

Eq. (9) are first determined by fitting an autoregressive

model to the data and performing a Kalman filter on it.

Once they are determined through an iteration of this

process, the covariance is estimated as shown in the

previous equations. The formalism is referred to as

TvLK throughout the rest of this paper.

c. The TvLK framework

The algorithm begins with an offline computation of

the process and measurement noise covariances, Q and

R, respectively. This is because it is expected that in

practice,Q andRwould change with each time step. The

filter then starts off with the computation of the Kalman

gain K through to the updated covariance matrix P, at

each time step, which is where the causality is computed.

At themeasurement and temporal updates, theBierman

and Thornton algorithms are applied to make the

computation more stable. This process is iterated

through all the time steps. Because of the ability of the

Kalman filter to detect change, it is expected that in

using it to estimate the Liang–Kleeman causality, im-

mediate changes along time will be preserved. As a

learning algorithm the Kalman filter estimations are

expected to improve along time when applied to the

formalism. It should be noted that several experiments

with this formalism have shown that obtaining an ac-

curate result is highly dependent on the offline compu-

tation of Q and R. A detailed diagrammatic scheme of

the framework of the TvLK is given in appendix B.

d. Wavelet transforms

The wavelet transform is mainly used to decompose a

signal into parts with different frequencies. Here, the

continuous wavelet form is used as a postprocessing tool

to decompose the output of the TvLK estimates to

obtain a multi-time-scale causal structure as a distribu-

tion of time and frequency. This is especially important

in instances where separated signals of a coupled system

are found to occur within the same period in a time-

varying distribution. The continuous wavelet is defined

as the convolution of xn with a translated and scaled

version of

W
n
(s)5 �

N51

n050

x
n0c

*[(n
0 2 n) dt]

s
, (16)

where xn is a discrete sequence, c0(h) is a wavelet

function, h is a nondimensional ‘‘time’’ parameter, the

(*) symbolizes the complex conjugate, wavelet scale s

and localized time index s. The obtained wavelet trans-

form [Wn(s)] is also complex, which can be divided into

the real and imaginary parts.

It is expected that by applying this to the time-varying

causality, it will become possible to visualize the sepa-

rated causality signals over a multiscale time-frequency

distribution. Following Torrence and Compo (1998), the
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significance level of 5% is computed for each case using

Monte Carlo simulations. There are several types of

wavelet functions in use, including the most common

ones, Morlet, Paul, and difference of Gaussian (DoG)

functions. While the Morlet and Paul are complex

functions, the DoGs are real. The choice of a wavelet

function is left to the user’s discretion. Readers are re-

ferred to Torrence and Compo (1998) for a guide to

using the transform and its different available functions.

We use the bump wavelet as part of the wavelet package

of MATLAB, in this study. A detailed description can

be found in Vialatte et al. (2009). The proposed for-

malism with the wavelet decomposition is termed

TFvLK hereafter. It is important to state that this is

simply the TvLK formalism with a spectral analysis ex-

tension. A summary and flow diagram of the calculation

procedure is given in appendix B.

3. Simulation studies

Numerical experiments are here conducted in order to

assess if the proposed TvLK and TFvLK formalisms can

properly determine the directed interactions. For this

purpose, two synthetic models are generated from nu-

merical simulations. The specific aims of these synthetic

model tests are to verify 1) if the proposed TvLK for-

malism based on Kalman filter can correctly reproduce

the predefined time-varying causal structure, and 2) if

this causal structure can be determined within the pre-

defined frequencies when decomposed into the time-

frequency domain by means of wavelet transform.

Based on the theory of Liang–Kleeman information

flow, the unit of derived causality is in nats per time.

a. Synthetic model 1

x
1
(t)5 0:36x

1
(t2 1)2 0:41x

1
(t2 2)

1 c
2/1

(t)x
2
(t2 1)1 e

1
(t) ,

x
2
(t)5 0:36x

2
(t2 1)2 0:41x

2
(t2 2)

1 c
1/2

(t)x
1
(t2 1)1 e

2
(t) , (17)

We first consider a bivariate autoregressive process of

X5 [x1, x2], as described in Eq. (17). The time series x1
and x2 have the same length of 1000 time points with

added white noise of zero means and unit variance e1(t)

and e2(t), respectively. c2/1 is a strength factor that in-

dicates the influences of x2 on x1; and c1/2 is a strength

factor that indicates the influences of x1 on x2. Both c1/2

and c2/1 are nonstationary along time. For 0, t, 500,

c2/1, is set to be 0 and c1/2 is set to be 2; for 500 ,
t ,1000, c2/1, is set to 2 and c1/2 is set to 0. By nu-

merical control, the time series x1 and x2 are both

generated at the frequency of about 0.2Hz. This is in-

tended to verify if the TFvLK formulism can correctly

determine the directed influences at the predefined

frequencies. The conceptual mode of this synthetic

model is shown in Fig. 1a.

In Figs. 1b and 2b, the blue (T2/1) and the green

(T1/2) lines represent the time-varying information

flow signals of the two-way interaction generated, while

the red (sig2/1) and pink (sig1/2) lines represent the

significant test values to determine the standard error

for each time step.1 Causality is inferred here if the ab-

solute value of the green line exceeds that of the pink,

and or the absolute value of the blue line exceeds that of

the red line. In the first half of the entire time period in

Fig. 1b, the derived T1/2 is seen to exceed sig1/2, while

the absolute value of T2/1 remains significantly less

than sig2/1. Consequently, a one-way causality, in-

dicating that x1 is causal to x2 but x2 is noncausal to x1,

can be inferred as seen in the first half of the entire time

period in Fig. 1a. In the second half, the reverse is ob-

served. While T2/1 is consistently larger than sig2/1,

T1/2 remains significantly less than sig1/2. Here, the

obtained results imply that x2 is causal to x1 but x1 is

noncausal to x2. These results are consistent with the

predefined causal structure of the conceptual model

described by Eq. (17) and shown in Fig. 1a, and suggest

that the TvLK formalism has the capability to determine

the time-varying causality within the given time series in

this simple time-varying model. The missing data at the

beginning of T1/2 and T2/1 are as a result of the offline

estimation of the process and measurement noise co-

variance (details can be found in appendix B). Since the

Kalman filter is in essence a learning algorithm, a suffi-

cient amount of data is initially needed for robust esti-

mations of these parameters. The T1/2 and T2/1 in the

time domain are then subjected to the Morlet wavelet

transform so that they can be decomposed into the fre-

quency domains. The derived time-frequency repre-

sentations of the directed influences between x1 and x2
are shown in Fig. 1c. Significance tests are conducted at

5% level using Monte Carlo simulations as suggested by

Torrence and Compo (1998). There appears to be a

significant T1/2 signal for the first half period, and sig-

nificant T2/1 signal for the second half period. These

signals are both obtained at the frequency band of

0.2Hz, as predefined in the synthetic model. It is,

1 Since the information flow signals do not represent relative

values, both negative and positive information flow results can be

obtained. As such, we multiply the significant test results (which

are always positive) by21 as well to determine whether or not the

information flow computed exceeds the significant test results. This

explains why the red and pink lines are symmetric about the x axis.
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therefore, concluded that the TFvLK formulism is ca-

pable of correctly determining the timing and the fre-

quency of the directed influences in the given simple

conceptual model. Furthermore, significant signals in

both Figs. 1b and 1c show quite similar magnitudes,

implying the same strengths of influences as predefined.

These results are encouraging and provide a sense of

confidence for future applications.

b. Synthetic model 2

In the climate system, the interactions among differ-

ent components may occur at different frequencies. It is

thus of interest to determine if the proposed TFvLK

formalism can disentangle the interactions at different

frequencies. Following the first synthetic model, again

we generate a bivariate autoregressive process of

X5 [x1, x2] as described in Eq. (18). In this case, for 0,
t , 550, both c1/2 and c2/1 are set to 0, so that neither

x1 nor x2 is causal to the other. For 550, t, 1000, c2/1,

is set to 0.95 and c1/2 is set to 0.45. By numerical con-

trol, the causality of T1/2 is set to occur at 0.1Hz and

that of T2/1 is set to occur at 0.2Hz. Within the climate

system, the chances of finding mutual causality at the

same time are rather frequent. However, these may, in

most cases, occur at different frequencies. Figure 2a

shows a conceptual form of this synthetic model as

should be obtained from the generated time series:

x
1
(t)5 0:39x

1
(t2 1)2 0:461x

1
(t2 2)

1 c
2/1

(t)x
2
(t2 1)1 e

1
(t) ,

x
2
(t)5 0:75x

2
(t2 1)2 0:3017x

2
(t2 2)

1 c
1/2

(t)x
1
(t2 1)1 e

2
(t) , (18)

Applying the TvLK to the generated time series

shows that it is able to yield the expected time-varying

results of nil causalities in the first part of the time period

since the information flow signals T1/2 and T2/1 are

less than the significant values. On the other hand, mu-

tual causalities are observed in the second part of the

time period as both information flow signals are statis-

tically significant. Additionally, the expected different

coupling strengths (Fig. 2b), at 1% significance level in

the second time period, are observed between the two

coupling signals.WhileT1/2 shows a smaller magnitude

of causality, T2/1 shows a much higher magnitude as

FIG. 1. (a) The conceptual syntheticmodel of the bivariate process as described in Eq. (17); (b) results of the time-

varying coupling strengths (nats per unit time) (T1/2 and T2/1) at a 1% significance level (sig1/2, sig2/1), and

(c) the time-frequency domain representations at a 5% significance level.
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predefined in the bivariate model and depicted in

Fig. 2b. This implies that the obtained TFvLK estimates

have been able to satisfy the requirements of causal di-

rection andmagnitudes in this simulation. Decomposing

T1/2 and T2/1 into the time-frequency distributions

using the Bump wavelet transform shows that T1/2

occur around 0.1Hz and T2/1 occur around a frequency

of 0.2Hz. It can also be observed from Fig. 2c that the

different magnitudes of coupling strengths are also very

well captured in the time-frequency domain.

4. Applications in land–atmosphere interactions

The previous section has shown the potential of the

TvLK and TFvLK algorithms to capture the causality

when the causal directions and magnitudes are known.

The data in the real worldmay present scenarios that are

rather more complex and chaotic and more difficult to

analyze. We apply here the proposed algorithms to soil

moisture and near surface air temperature coupling in

China. We aim to understand their performances in

disentangling the direct interactions between the top

layer soil moisture and the overlaying air temperature.

Soil moisture is essential in the land–atmosphere in-

teractions. It partitions the available energy into latent

heat for evaporation and sensible heat for air tempera-

ture increase (Seneviratne et al. 2010). While soil

moisture may also affect the subsequent precipitation

(Taylor et al. 2012; Tuttle and Salvucci 2015), it is also

found to have considerable impacts on air temperature,

especially on the short- to medium-term occurrence of

heat waves (Miralles et al. 2012, 2014).

The territory of China features a complex topography

and a diverse climate. In East China, the climate is

dominated by the East Asian monsoon system, leading

to cold and dry winters as well as warm and wet sum-

mers. Generally, the rainy season starts in May and lasts

until October in Southeast China, and it starts in July

and lasts until August in the northwest of China. Con-

sequently, the soil moisture patterns exhibits large spa-

tial and temporal variations (Parinussa et al. 2017).

Studies have indicated the theoretical relations between

soil moisture and air temperature; with limited soil

moisture, evaporative cooling decreases, which leads

to a rise in air temperature, and rising air temperature

results in increased atmospheric demand of water vapor

FIG. 2. (a) The conceptual syntheticmodel of the bivariate process as described in Eq. (18); (b) results of the time-

varying coupling strengths (nats per unit time) (T1/2 and T2/1) at a 1% significance level (sig1/2, sig2/1), and

(c) the time-frequency domain representations at a 5% significance level.
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and thereby further reduced soil moisture (e.g., Seneviratne

et al. 2010). However, such relations may vary through

space and time.

We selected two regions in China for further study

that are denoted as RA and RB in Fig. 3. RA is located

in East China, which is a transitional climate zone be-

tween dry and wet climates; however, RB is located in

South China, where it features a rather wet climate with

significant precipitation. In recent years, there is more

and more evidence from numerical simulations (Fischer

et al. 2007) and diagnosis analysis (Casagrande et al.

2015; Miralles et al. 2012) that a significant impact of soil

moisture on air temperature is most likely to occur in the

transitional climate regimes. Therefore, we expect to

find more significant signals of soil moisture impact in

RA rather than RB. Daily data of volumetric soil mois-

ture and 2-m air temperature from the European Centre

for Medium-RangeWeather Forecasts (ECMWF) ERA-

Interim are used. The data are gridded at a horizontal

resolution of 0.258 and span from January 2012 to De-

cember 2015. All interpretations are limited to the two

parameters of the coupling.

Figures 4 and 5 show the soil moisture–temperature

information flow in the time-varying and time-frequency

domain over RA and RB. The significance tests of each

pixel in the selected regions are computed at a 5% sig-

nificance level. Here, the black solid lines present the

mean of the information flow of all the individual pixels

FIG. 3. An overview of the study area, mainland China. RA

represents a partly wet–partly dry climate region while RB repre-

sents a wet climate region.

FIG. 4. Information flow between soil moisture and air temperature for RA. (a) The time-varying information

flow from soil moisture to air temperature and (b) the time-varying information flow from air temperature to soil

moisture. Causality is implied where the absolute value of the information flow signals (shown in blue shades and

the black solid line) exceed the absolute values of the significance results computed based on Eq. (C1) (shown

in red shades and red solid lines). The frequency distribution of (c) causality from soil moisture to air temper-

ature and (d) the causality from air temperature to soil moisture. All the significance tests were done at a 5%

significance level.
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in the selected regions (RA in Fig. 4 and RB in Fig. 5),

and the blue shades represent the standard deviation of

all the computed information flow of the individual

pixels in the selected region from the mean (black solid

line). Similarly, the solid red line is themean significance

test values for all the pixels, and the shaded parts are the

standard deviation from this mean. Causality is implied

when the absolute values of the blue shades and black

solid lines exceed the red shades and the red solid

lines. Themultiyearmean of the 4 years, 2012–15, is here

used to derive the seasonal variability. No preprocessing

of the datasets was done before computing the in-

formation flow results. Figure 4a shows the time-varying

information flow results from soil moisture to air temper-

ature (hereafter referred to asTsoilmoisture/airtemperature).

It can be seen that while Tsoilmoisture/airtemperature is not

significant for most parts of the year in this region,

a statistically significant signal occurs in spring. This

implies that soil moisture has a significant feedback on

air temperature in spring. Hence, soil moisture may

provide some information to predict or forecast the

variability of air temperature over the region. During

spring, temperatures are rising relatively fast and frozen

soils are generally thawed out, especially within the top

soil layer. Sensible heat, therefore, becomes a very im-

portant factor within the interaction of the land and

atmosphere, so that evaporation over time gradually

increases. Soil moisture, thus, regulates the near surface

temperature, keeping it generally cool. With a high de-

mand of soil moisture for evapotranspiration its availabil-

ity makes it a significant controlling factor. This makes

Tsoilmoisture/airtemperature more significant than the in-

formation flow from air temperature to soil moisture (here

after referred to as Tairtemperature/soilmoisture) (Fig. 4b).

TheTairtemperature/soilmoisture (Fig. 4b) of this interaction

over the region is observed to be relatively insignificant

throughout the year. These separated signals of the in-

teraction are in agreement with the current understanding

of land surface atmosphere interactions. To verify that the

causalities of the separated signals occurring in the same

period of time are not the result of statistical pitfalls, their

frequency distributions are also plotted in Figs. 4c and 4d.

Applying the wavelet transform to obtain the time-

frequency distributions of both signals clearly reveals

that they occur at different time scales, with the latter

occurring on a shorter periodicity than the former. The

FIG. 5. Information flow between soil moisture and air temperature for RB. (a) Time-varying information flow

from soil moisture to air temperature and (b) the time-varying information flow from air temperature to soil

moisture. Causality is implied where the absolute value of the information flow signals (shown in blue shades and

the black solid line) exceed the absolute values of the significance results computed based on Eq. (C1) (shown

in red shades and red solid lines). The frequency distribution of (c) causality from soil moisture to air tem-

perature and (d) the causality from air temperature to soil moisture. All the significance tests were done at a 5%

significance level.
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significant parts of Tsoilmoisture/airtemperature are ob-

served to occur at larger time scales in Fig. 4c, beginning

from the start of spring and persisting into the early

periods of summer. It is important to keep in mind that

the coarse spatial and temporal resolutionmakes it more

difficult to obtain finer signals of significance. According

to Fig. 4d, if any level ofTairtemperature/soilmoisture is to be

significant, it would be found to occur at shorter time

scales between 3 and 30 days’ periodicity in midspring.

These results are, however, in very good agreement with

previous studies (e.g., Seneviratne et al. 2010). The soil

moisture to air temperature causality is here found to be

stronger than the air temperature to soil moisture cau-

sality signal. An advantage of the TvLK formalism is

that it is able to capture abrupt changes in the in-

teractions over time since it does not smooth the time

series estimation. Of course, since the Kalman filter is a

learning algorithm, the results improve along time, as

also seen in the synthetic model figures in the previous

section.

Figure 5 presents the information flow results over the

southeastern part of China (RB). This region is consid-

ered to be mostly wet; however, due to its position, it

also receives sufficient enough solar radiation, thus also

has a significant air temperature variability. A critical

overview of both Figs. 5a and 5b also suggests that there

is a distinct time lag between the two signals. Figure 5a

demonstrates that Tsoilmoisture/airtemperature leads the

coupling from late winter to early spring as expected.

This period finds the region drier, but with significantly

high air and soil temperatures, yet much less rainfall. As

such, the beginning of the year presents the region as a

soil-moisture-limited regime, causing soil moisture to

constrain evaporation. The wavelet decomposition in

Fig. 5c also sheds more light onto the interaction and

shows that the signal significantly occurs between 4- and

30-day cycles of late winter and early spring.

Figure 5b shows the other side of the coupling in this

region. From the wavelet analysis in Fig. 5d, we may say

that the direct causal structures within the coupling are

well separated. The periods of late spring and early to

midsummer indicate strong signals in both the time-

varying and time-frequency distributions. While the

Tsoilmoisture/airtemperature is strongest over shorter time

scales, Tairtemperature/soilmoisture is strongest over longer

time scales. Of course, these are findings as interpreted

from the ERA datasets, and as such the uncertainties

within the assimilation data will surely impact the in-

teractions. However, the results are in very good

agreement with current understanding of soil moisture

climate interactions (Seneviratne et al. 2010). As it is

considered to be an energy-limited region, air temper-

ature is seen to be the controlling factor in most parts of

the year. With reduced temperatures in autumn, yet

sufficient moisture in the soil, air temperature becomes

the main controlling factor in the region and constrains

the magnitude and rate of evapotranspiration. It is

worth emphasizing that the results of the time-varying

information flow used here are not qualitatively based,

but importantly, quantitatively, in nats day21. As such,

the magnitude of the signals can provide very good in-

sights for future predictive capability.

5. Discussion

Information flow has long been recognized to be

logically associated with causality and is hence ideal for

understanding the cause–effect relationship within in-

teractions (Liang 2008, 2016); it quantifies the exchange

of information between two systems or events, showing

both the direction and magnitude within a cause–effect

relation (Hlavá�cková-Schindler et al. 2007). Recently it

has been reported that it actually can be rigorously de-

rived from first principles within the context of sto-

chastic dynamical systems (Liang 2008, 2016). Our

ability to assess these qualities (magnitude, direction,

and time variation) of causality in the interactions be-

tween events gives us a better insight into the behavior

of the system and hence its predictive capability. Fur-

thermore, our ability to rank interactions based on

magnitudes is crucial in extreme event research as well

as for a better understanding of a natural systems. This is

exceedingly useful in different fields like meteorology,

climatology, finance, and game theory.

In Eq. (15), the square root Kalman filter is used to

estimate the information flow rate in a coupling to de-

termine their direct causal structures. The Kalman filter

as a learning algorithm is able to identify immedi-

ate changes when tracking the time-varying causality

within a system. Previous studies have successfully in-

tegrated the Kalman filter into time-invariant formal-

isms to obtain time-varying structures (Omidvarnia

et al. 2011; Punales 2011). Havlicek et al. (2010) also

integrated the Kalman filter into the generalized par-

tial directed coherence (GPDC) to obtain a dynamic

Granger causality formalism to analyze causality both

along frequency and time. Both the theoretical tests and

application of their Kalman filter-based formalism

showed significant improvements of the time-invariant

GPDC. Fundamentally, interactions between any two

events may vary with time; and as such, a time-invariant

formalism does not offer a faithful representation of the

evolution of the interactions. Here, we use the Kalman

filter to estimate the covariances at each time step in

Eq. (8) to obtain a time-varying structure as seen in

Eq. (15) (TvLK).
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We have established that the TvLK [Eq. (15)] is able

to obtain a rigorous quantitative measure of their causal

structure just as its time-invariant formalism [Eq. (8)].

The formalism that results in Eq. (8) has already been

tested in both deterministic and stochastic systems

(Liang 2016) and has been successfully applied to a va-

riety of applications for interaction studies. These rig-

orous properties are clear in the TvLK, and thus offer

much potential. Other methodologies like the Granger

causality, directed coherence, and the directed transfer

functions, which use vector autoregressive models for

their parameter estimations require stationary residuals

that could lead to different kinds of erroneous out-

comes. However, the TvLK is able to handle both sta-

tionary and nonstationary conditions, and thus, offers

advantages for wider application. Dhamala et al. (2008)

identified that the parametric Granger causality tech-

niques were better suited for low-order autoregression

(AR) processes than for data that required high-order

AR models. The wavelet-based Granger causality

(Dhamala et al. 2008) that was proposed in the same

study, though nonparametric, is computationally ex-

pensive because it has to be applied to multiple re-

alizations. While the accuracy of this formalism relies

heavily on a number of analyzed realizations, the TvLK

has been shown in the above synthetic models that one

realization is able to offer the needed information for a

proper causality analysis. This is of great importance

because real-world observations are usually taken once

from a single source, and thus, may offer only one time

series to capture the evolution of an event. Another

important advantage of the original causality formalism

in Liang (2014, 2016), and thus, the TvLK is that they are

very easy to compute since they do not require AR

modeling, but are composed of covariances for compu-

tation of causality.

Section 3 has shown that the principle of nil causality

(Liang 2014, 2016) is detectable by the TvLK, which is

not easily identified in some commonly used classical

causal inference approaches. In their work, Orlowsky

and Seneviratne (2010) showed with a statistical feed-

back parameter, the empirical feedback analysis, that

covariability, although necessary, may not be sufficient

to imply a causal relation between two variables. This, of

course, holds for other different measures such as lagged

or partial correlation, Granger causality and regression

analysis. They showed that a third variable might be the

reason for identifying covariability between two vari-

ables. This was illustrated in the same study by demon-

strating how the influence of sea surface temperatures

(SST) on precipitation persistence is easily mistaken for

the impact of soil moisture on precipitation. This sta-

tistical pitfall is here tackled in two ways. First, we

established through the numerical experiments that in a

coupled system, the TvLK is able to detect an un-

ambiguous one-way feedback relationship, which is es-

sential for establishing a causal relation. In addition,

where a two-way causality does not occur within the

same period of time, we assume the absence of a sta-

tistical pitfall. Second, since a knowledge of the tem-

poral scale (frequency) of causality between any two

variables is essential to verifying the presence of the

influence of a third variable, we extend the work flow of

the TvLK to include a frequency decomposition. Using

the continuous wavelet, we showed in the same synthetic

model experiments that the significant causalities really

do occur at their preset frequencies. This becomes even

more important when the separated feedback signals

tend to have a similar time-varying structure, so that we

can verify the absence of a statistical pitfall by identi-

fying if the causal relations occur at different tempo-

ral scales. This is difficult to identify just by observing

the information flow time series. However, a time-

frequency distribution is able to shed more light on the

different temporal scales of causality. This is clearly

demonstrated in the application section of this study.

The results of the synthetic model experiments thus

show that the TvLK does meet all the requirements

expected of it for a reliable application. It is important to

note that the TvLK formalism is developed to in-

vestigate the direct relationship within an n-dimensional

system, and as such may not be readily applicable to

investigate partial (or conditional) causal relationships.

This is, however, set for future studies in line with this

current one.

To understand how all these properties of the TvLK

would perform in a real-world application, section 4 has

demonstrated an application in the soil moisture–air tem-

perature interaction over selected regions in China based

on the first volumetric soil water layer (representing soil

moisture) and the 2-m air temperature. ERA-Interim

dataset is based on an assimilation scheme that considers

the relationship between soil moisture and temperature

based on the classical hydrological framework for defining

evapotranspiration regimes as a function of soil moisture.

This means we can expect the embedded causalities

within the time series. Tsoilmoisture/airtemperature was

found to be themore significant one over the partly wet–

partly dry Huabei region. Conversely, over the Huanan

region in Southeast China, Tairtemperature/soilmoisture was

found to be more significant. These results are in

agreement with the current understanding of soil mois-

ture temperature feedbacks. Applying a spectral analy-

sis to these results showed that the different signals

occurred at different temporal scales. Over the Huabei

region, Tsoilmoisture/airtemperature was stronger and
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occurred at longer time scales. The converse was found

over the Huanan region.

A very significant point worth mentioning here is that

the very rigorous and nice properties found in the Liang

formalism [Eq. (8)] [as stated in Liang (2014, 2016)] are

found to hold in the TvLK as well. This certainly would

make this a preferable choice to transfer entropy and the

Granger tests in many instances, as proven (Liang 2016).

Another important property, which is noteworthy of

mention, is that Eq. (8) was purposely derived for

physical systems from nature, which is clearly demon-

strated in section 4. Although the only application pre-

sented here is in land–atmosphere interactions, the

TvLK, like the LK, can be applied in other problems in

the natural sciences. It is expected to be especially useful

in weather and intraseasonal analyses where causal re-

lations have been suggested to change more quickly and

are difficult to observe more clearly. Beyond the natural

sciences, it is expected to be equally useful in the areas of

finance and the social sciences.
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APPENDIX A

The Bierman–Thornton Formalism

During the development of the Kalman filter in

the last few decades, it was found that the standard

Kalman filter has the propensity to accumulate nu-

merical errors due to round offs during computa-

tions. As a result, the filter becomes unstable and

accuracy of its estimation would thus, be compro-

mised (Roncero 2014). In this regard, the square root

family of the Kalman filter was developed to handle

such instabilities, to make the filter more robust; this

class of the filter has been applied in many studies and

have shown significant advantages (Zhou et al. 2015).

In this study, we make use of the Bierman–Thornton

algorithm with modified Cholesky decomposition

in the measurement and time updates of the filter

(Fig. A1). This is expected to make the TvLK com-

putation more stable and robust. The comparison of

the standard Kalman filter and the square root forms are

beyond the scope of this study, as such, no such experi-

ments were included. Nonetheless, the algorithm has

been developed to allow the user to choose to use either

of the forms of the filter.

The Bierman–Thornton (UD filtering) methodology

includes two main parts: the Bierman algorithm to

update the observations (or measurements) of the U

and D modified Cholesky factors of the covariance

matrix P, where U is a unit upper triangular matrix and

the D is a diagonal matrix. This gives P in the form P5
UDUT. The second part is the Thornton algorithm,

which is mainly used for the temporal update of U and

D. Following Bierman and Thornton (1976) and its

references thereof and as stated above, the factored for

of P is given as

P5UDUT . (A1)

Factoring Eq. (13) using Eq. (A1) yields

UDUT 5U2[D2 2 1/a(D2U2Ta)(D2U2Ta)T]U2T ,

1/a5H
k
P2
k H

T
k ,

(A2)

where a here is defined as the innovations variance of

the measurement vector and a is defined as an obser-

vation coefficient. Let the n vectors of f and v be defined

by

f5U2Ta ,

v5D2fa , (A3)

and let U and D be the UD factors of D2 2 1/avvT, thus

UDUT 5D2 2 1/avvT . (A4)

Substituting Eq. (A3) into Eq. (A4) gives

UDUT 5 (U2U)D(U2U)T , (A5)

and since U and U are unit upper triangular, we obtain

the solutions as

U5U2U ,

D5D, and (A6)

P2
k11 5A

k
P
k
AT

k 1Q
k
. (A7)

Substituting the Bierman observation update into

Eq. (A7) gives

P2 5A
k
(U1D1U1)AT

k 1Q
k
. (A8)

A more detailed and complete description of the

Bierman–Thornton algorithm is beyond this paper.

Readers are referred toGrewal andAndrews (2001) and

its references therein. Table A1 below summarizes the
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difference between the standard Kalman filter and its

square root framework based on the Bierman–Thornton

algorithm.

APPENDIX B

The Framework of the TvLK

Many studies have focused on producing accurate

results for the noise covariances, and have been able to

show that since we are unable to observe the process

under estimation, Q, the process noise covariance be-

comes even more difficult to determine (Åkesson et al.

2008; Bavdekar et al. 2011; Odelson et al. 2006; Saha

et al. 2011). In this study, we employ the use of the ex-

ponentially weighted moving average (EWMA) and

unweighted moving average (UWMA) to estimate Q

and R offline.

Although the Kalman filter has received a wide rec-

ognition and has been shown to provide optimal solu-

tions where needed, its adaptive parameterization holds

the greatest challenges. Previous work has identified

that even though the filter is able to produce very reli-

able results, the estimation of the process and mea-

surement noise covariances, Q and R, is rather difficult

(Bavdekar et al. 2011; Saha et al. 2011; Mohan et al.

2015). It is therefore important to carefully parameter-

ize these variables to obtain a more robust output. A

common practice is to set Q and R to be constants,

precisely, to be unit matrices. However, in reality,Q and

R are expected to change at each time step. The for-

malism in this study uses a smoothed version of the time

series as a surrogate for the true process state, which is

done with EWMA or UWMA to derive Q and R offline

at each time step (shown in Fig. A1). Several experi-

ments conducted during this study have also confirmed

that the Kalman gain is more accurately computed when

Q and R are properly derived. Given this associative

property, the formalism presented in this study is some-

what more difficult to derive because of the Kalman

filter. Thus, several tests were required to obtain an

optimal solution. Because of the square root form of the

Kalman filter used here, computation is rather expen-

sive. It takes about 3 times the time length to compute,

as against the traditional causality in Liang (2014). The

FIG. A1. A framework of the time-frequency varying causality formalism.

TABLE A1. A comparison of the standard and square root Kalman filter formalisms.

Process The standard Kalman filter The square root Kalman filter

Compute Kalman gain Kk 5P2
k H
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EWMA and UWMA chosen in this study were to fa-

cilitate easier computations. Of course, in the use of the

EWMA and UWMA methods, there is the require-

ment of the choice of a lookback window length to

compute the moving average. In an attempt to do this,

an information length of the window length is lost to do

the forward update of the filter. This is seen from the

missing data in the time-varying results of the synthetic

models in Figs. 1 and 2. An optimal linear smoother is

suggested by Fraser and Potter (1969) by running the

filter backward using the last estimate of the forward

recursion of the filter to initialize it, and then combin-

ing both the forward and backward runs. Using this

approach of forward and backward runs, which has

already been tested in the course of this study, does

help to curb the problem of the missing data of the

initial time steps of the TvLK result, though it was

eventually not adopted. Further studies will look into

employing the optimal smoother in the Kalman filter

run of this formalism. It can therefore be seen in the

frequency decomposition of the synthetic model re-

sults, the missing data of the preceding parts of the

information flow time series were not used in the

wavelet decomposition.

APPENDIX C

Significance Testing

For a statistical tool such as in Eq. (8), it is rather

necessary to do a significance test so as to better un-

derstand the robustness of the derived result. For this

purpose, we use the Fisher information matrix equation

[Eq. (C1)], following Liang (2014), since its inverse gives

obtains a covariance matrix with a given significance

level. Liang (2014) suggested that the normally used

bootstrap method may not hold much simplicity to

obtain a good significance level. With a large sample size

N, the information flow approaches a normal distribu-

tion around its true value with a variance (c12/c11)
2
s2
a12
,

which is derived from the maximum likelihood estima-

tion. Thus, if we denote û5 (f1, a11, a12, b1), we obtain

NI
ij
52�

N

n51

›2 logr (X
n11

jX
n
;u)

›u
i
›u

j

, (C1)

where I in the matrix NI represents the Fisher in-

formation matrix. The inverse of NI is the covariance

matrix of û, which has s2
a12

within. Here, r is themarginal

probability of {Xn}, a Markov process. Readers are re-

ferred to Liang (2014) for details of Eq. (C1).
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