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ABSTRACT

The Charney model is reexamined using a new mathematical tool, the multiscale window transform (MWT), and the
MWT-based localized multiscale energetics analysis developed by Liang and Robinson to deal with realistic geophysical fluid
flow processes. Traditionally, though this model has been taken as a prototype of baroclinic instability, it actually undergoes
a mixed one. While baroclinic instability explains the bottom-trapped feature of the perturbation, the second extreme center
in the perturbation field can only be explained by a new barotropic instability when the Charney–Green number γ� 1, which
takes place throughout the fluid column, and is maximized at a height where its baroclinic counterpart stops functioning.
The giving way of the baroclinic instability to a barotropic one at this height corresponds well to the rectification of the
tilting found on the maps of perturbation velocity and pressure. Also established in this study is the relative importance of
barotropic instability to baroclinic instability in terms of γ. When γ� 1, barotropic instability is negligible and hence the
system can be viewed as purely baroclinic; when γ� 1, however, barotropic and baroclinic instabilities are of the same order;
in fact, barotropic instability can be even stronger. The implication of these results has been discussed in linking them to real
atmospheric processes.

Key words: Charney’s model, multiscale window transform, canonical transfer, baroclinic instability, barotropic instability

Citation: Zhao, Y.-B., and X. S. Liang, 2019: Charney’s model—the renowned prototype of baroclinic instability—is
barotropically unstable as well. Adv. Atmos. Sci., 36(7), 733–752, https://doi.org/10.1007/s00376-019-8189-8.

Article Highlights:

• The Charney model actually has a flow system that is barotropically unstable as well.
• The relative importance of barotropic instability to baroclinic instability varies with the Charney–Green number (γ).
• The second maximum on the perturbation fields can only be explained by the barotropic instability when γ� 1.

1. Introduction

The Charney model (Charney, 1947) as a prototype of
baroclinic instability has been extensively studied. The re-
sulting perturbation patterns, though idealized, have been uti-
lized to interpret the generation of midlatitude synoptic dis-
turbances, such as those in frontal dynamics, storm track dy-
namics (e.g., Blackmon et al., 1977; Hoskins and Valdes,
1990; Nakamura, 1992; Chang and Orlanski, 1993), and so
forth. Even today, this seemingly very old field is still active
(Badin, 2014; Chai and Vallis, 2014). As noted by Pierre-
humbert and Swanson (1995), “Baroclinic instability is far
from a closed book, even in very classic areas.” Indeed, there
are still questions unanswered with this model. For instance,
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though most of the perturbation fields for an unstable mode
are bottom-trapped, the vertical perturbation velocity w′ is
not, and, moreover, there exists a second extreme on the sec-
tional distributions of the zonal perturbation flow u′ and per-
turbation temperature T ′ (refer to section 3.3 in this study).
How is this secondary center of the perturbation generated,
and where is its energy from, if, in the classical point of view,
the system undergoes a bottom-trapped baroclinic instability?

The only relevant explanation of the upper secondary
maximum so far may come from the isentropic potential vor-
ticity (PV) perspective. In the Charney model, the eastward
propagating surface Rossby wave interacts with an internal
Rossby wave, which lives on the background PV gradient and
travels westward relative to the flow. The phases of these two
counter-propagating Rossby waves must lock for exponential
growth (Hoskins et al., 1985). Such an explanation is intu-
itive, but, more fundamentally, what behind the interaction is

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



734 CHARNEY’S MODEL IS BAROTROPICALLY UNSTABLE AS WELL VOLUME 36

still unclear. A question first coming into mind is: how are
the Rossby waves generated before the interaction, and where
do the two waves receive energy for their growth?

On the other hand, it has long been overlooked that Char-
ney’s model admits instability processes that are local in na-
ture. We know that, in the model, the interior PV gradient q̄y
is positive, and so is the vertical shear at the lower boundary.
This meets one of the four Charney–Stern–Pedlosky instabil-
ity conditions (e.g., Vallis, 2006). However, such a condition
is stated in a global sense, which does not imply a local in-
stability structure. With regards to the Charney model, one
often sees tilting patterns on the sectional distributions of per-
turbation fields. The westward tilting of the phase lines with
height on the distributions of u′ and p′ (see section 3.3 below)
is an indicator of baroclinic instability by the classical result.
However, the phase variation with height is confined near the
bottom. Over most of the fluid column the phase line is nearly
straight (e.g., Charney, 1947; Kuo, 1952, 1979; Green, 1960;
Geisler and Garcia, 1977; Fullmer, 1982; Branscome, 1983).
Consequently, the heat flux via the unstable wave will be sim-
ilarly confined to a region near the lower boundary.

Historically, multiscale energetics analysis has been used
to infer the instability characteristics of the Charney model,
since instabilities are essentially energy transfer processes be-
tween the mean and perturbation fields. Kuo (1952) argued
that, in the Charney model, downward transport of zonal mo-
mentum u′w′ and northward heat transport v′T ′ are impor-
tant energy sources for perturbation kinetic energy. How-
ever, other studies (e.g., Green, 1960, 1970; Fullmer, 1982;
Branscome, 1983; Pedlosky, 1987) have shown that the per-
turbation energy source in the Charney model is the poten-
tial energy (from the sloping isentropic surfaces) rather than
the kinetic energy release of the vertical shear of the basic
flow. On the other hand, although some of these features
in the Charney model agree with those of more realistic at-
mosphere, major discrepancies exist between results derived
from linear theory and observations. For instance, in the
Charney model perturbation energy has only one maximum
at the surface (Charney, 1947; Brown, 1969; Song, 1971; Si-
mons, 1972), whereas in the real atmosphere there are two
maxima in the vertical, one at the surface and the other near
the tropopause, and the latter is in fact larger (e.g., Kao and
Taylor, 1964; Lorenz, 1967). In some studies the formation
of the upper-level maximum has been investigated with more
realistic models (e.g., Simons, 1972; Gall, 1976a; Simmons
and Hoskins, 1978), but few studies have ever been dedicated
to explaining the secondary maximum at the upper levels of
the Charney model. One possible reason may be because the
maximum is unrealistically weak, whilst another may be due
to the limitation of the methods available then. The above
questions, though with a highly idealized model, actually ap-
pear to be difficult. The difficulty comes from the multiscale
energetics, which form convenient diagnostic quantities for
the problem, but do not have the needed local structure within
the classical framework.

Ever since Lorenz (1955) set up a two-scale formal-
ism of energetics with the Reynolds decomposition, ener-

getic analysis has become a powerful diagnostic tool for dy-
namic meteorology. This has been seen previously in stud-
ies of mean flow–wave/eddy interaction (e.g., Dickinson,
1969; Fels and Lindzen, 1973; Boyd, 1976; McWilliams
and Restrepo, 1999), atmospheric blocking (Trenberth, 1986;
Fournier, 2002), regional cyclogenesis (Cai and Mak, 1990),
and storm tracks (e.g., Chang and Orlanski, 1993; Chapman
et al., 2015), to name a few. This tool is particularly useful
for the purpose of this study because the instability of a back-
ground flow is essentially a process that transfers energy from
the background to perturbations. However, classical energet-
ics, and the Lorenz cycle in particular, are stated in global
form. That is to say, they are expressed in global averages or
integrals (e.g., Pedlosky, 1987). In the past several decades,
there has been a continuing effort to relax the spatial aver-
aging/integration in order to extend this global formalism to
regional atmospheric processes, for which averaged energet-
ics may not yield useful information because of their local-
ized nature (they tend to be locally defined in space and time
and can be on the move). The instability that we will look
in this study is such an example; it obviously has a vertical
structure which will be disguised in a mean quantity diagno-
sis. The extension, of course, is by no means as trivial as a
relaxation of the averaging/integration. The major issue here
is how to separate the in-scale transport and the cross-scale
transfer from the intertwined nonlinear process. A tradition
started by Lorenz himself is to collect the terms in divergence
form, and take them as the representation of the transport pro-
cess. The remainder of the nonlinear interaction is then the
energy transfer between the distinct scales (e.g., Harrison and
Robinson, 1978).

The above approach to separating transport and trans-
fer processes has been a standard practice in fluid dynam-
ics research, particularly in turbulence research (cf. Pope,
2000). However, there is a severe issue to be resolved, as
long pointed out by Holopainen (1978) and Plumb (1983) but
mostly overlooked. While it is known that a transport pro-
cess indeed bears a divergence form in the governing equa-
tions, the separation is not unique. Multiple divergence forms
exist that may yield quite different transfers; that is to say,
the so-obtained energy transfer in such an open system is
quite ambiguous. This issue, which is actually quite pro-
found in fluid dynamics, has long been identified but has not
received enough attention, except for a few studies such as
Plumb (1983). An early attempt to solve this problem is the
multiscale energetics analysis by Liang and Robinson (2005),
which is based on the multiscale window transform (MWT), a
functional analysis tool that was later on rigorized (Liang and
Anderson, 2007). However, in Liang and Robinson (2005),
the transport–transfer separation was introduced in a half-
empirical way. Recently, Liang (2016) found that this ac-
tually can be put on a rigorous footing. The energy trans-
fer can be rigorously derived, and the resulting expression is
unique. Moreover, it bears a Lie bracket form, reminiscent of
the Poisson bracket in Hamiltonian mechanics. In this study,
we use the MWT-based multiscale energetics method to re-
examine the Charney model and, unexpectedly, find that this
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model, which has been taken as a prototype of baroclinic in-
stability, actually undergoes a mixed one; the second extreme
center on the perturbation flow can be largely explained by
the newly discovered barotropic instability, and the accom-
panied kinetic energy (or barotropic) transfer is mainly con-
tributed from the vertical momentum flux.

The paper is organized as follows: In the next two sec-
tions, we briefly introduce the methodology and the Char-
ney model. Followed is a description of the generation of the
dataset needed for the study. In section 4, a detailed energet-
ics analysis is presented. This work is summarized in section
5.

2. Localized multiscale energy and vorticity

analysis

The research method for this study is the multiscale en-
ergetics part of the localized multiscale energy and vortic-
ity analysis, or MS-EVA for short (cf. Liang and Robinson,
2005); also to be used is the MS-EVA-based theory of lo-
calized finite-amplitude baroclinic and barotropic instabili-
ties (Liang and Robinson, 2007). This is a systematic line of
work, involving ingredients from different disciplines such as
mathematics and geophysical fluid dynamics. A comprehen-
sive description is beyond the scope of this paper. In the fol-
lowing we present just a very brief introduction. The reader is
referred to Liang (2016) for details, or, alternatively, to Liang
and Wang (2018), section 2, for another short introduction
but with more details furnished.

MS-EVA is based on a novel functional analysis tool
called multiscale window transform (MWT; Liang and An-
derson, 2007). With the MWT, one can split a function space
into a direct sum of several mutually orthogonal subspaces,
each with an exclusive range of time scales, while having its
local properties preserved. Such a subspace is termed a “scale
window”, or simply a “window”. A scale window is bounded
above and below by two scale levels. In the M-window case,
they are bounded above by M scale levels: j0, j1, . . . , jM−1.
(A level j corresponds to a period 2− jτ for a time duration
τ.) For convenience, these windows will be denoted with
� = 0,1, . . . ,M−1, respectively.

MWT can be viewed as a generalization of the classi-
cal Reynolds decomposition; originally it was developed to
faithfully represent the energies (and any quadratic quanti-
ties) on the resulting scale windows. This is the key to multi-
scale energetics analysis. Liang and Anderson (2007) found
that, for some specially constructed orthogonal filters, there
exists a transfer-reconstruction pair, namely, MWT and its
counterpart, multiscale window reconstruction (MWR), just
like Fourier transform and inverse Fourier transform. In other
words, MWR is just like a filter in the traditional sense. What
makes it distinctly different is that, for each MWR, there
exists an MWT which gives transform coefficients that can
be used to represent the energy of the filtered series. (Nor-
mally, with a traditional filter there are no such coefficients
and hence energy cannot even be represented; see below).

Fig. 1. Schematic illustration of the MS-EVA energetics for a
two-scale window decomposition. The symbols are conven-
tional in MS-EVA studies, with the superscripts 0 and 1 signify-
ing the time-mean and perturbation windows, respectively. See
Eqs. (8) and (9) and Table 1 for interpretations of the symbols.

Now, suppose {ϕ j
n(t)}n is an orthonormal translational in-

variant scaling sequence [built from cubic splines; see Liang
and Anderson (2007) and Fig. 1 in Liang (2016)], with j some
scale level, n the time step, and t the time variable. Let S (t) be
some square integrable function defined on [0,1] (if not, the
domain can always be rescaled to [0,1]). Liang and Ander-
son (2007) showed that, in practice, all such functions can be
expanded with {ϕ j

n(t)}n as a basis; and the resulting transform,

Ŝ j
n =

∫ 1

0
S (t)ϕ j

n(t)dt , (1)

for any scale level j (corresponding to frequency 2 j), is called
a scaling transform. Given window bounds j0, j1 for a two-
window decomposition, S can then be reconstructed on the
windows formed above:

S ∼0(t) =
2 j0−1∑
n=0

Ŝ j0
n ϕ

j0
n (t) , (2)

S ∼1(t) =
2 j1−1∑
n=0

Ŝ j1
n ϕ

j1
n (t)−S ∼0(t) , (3)

where ∼0, ∼1 indicate the corresponding scale windows.
With these MWRs, the MWT of S is defined as

Ŝ ∼�n =

∫ 1

0
S ∼�(t)ϕ j1

n (t)dt , (4)

for windows�= 0,1 and n= 0,1, · · · ,2 j1 −1. In terms of Ŝ ∼�n
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the above MWRs can be written in one equation:

S ∼�(t) =
2 j1−1∑
n=0

Ŝ ∼�n ϕ
j1
n (t) . (5)

The two equations for Ŝ ∼�n and S ∼�(t) form a transform-
reconstruction pair for the MWT. Note that the S ∼�(t) are
just like the low/high-pass filtered quantities which are de-
fined in physical space, while the transform coefficients Ŝ ∼�n
(just like Fourier coefficients) can be used to represent mul-
tiscale energy—it has been rigorously proven that the energy
on scale� is precisely proportional to the square of the MWT
coefficients (Liang and Anderson, 2007). For example, the
perturbation energy extracted from S (t) is simply (Ŝ ∼1

n )2 mul-
tiplied by some constant. It is by no means the filtered quan-
tities (S ∼1)2, which, however, has been frequently seen in the
literature! Moreover, since Ŝ ∼�n is localized (time location
labeled by n), time variation can be spoken for the result-
ing energetics even though the multiscale decomposition is
performed with respect to time, in contrast to the traditional
Reynolds decomposition, which, if performed with respect to
time, only results in time-invariant energetics.

With MWT, the available potential energy (APE) and ki-
netic energy (KE) densities (for convenience, we simply refer
to them as APE and KE, unless confusion may arise) for win-
dow � can be defined, following Lorenz (1955), as

A�n =
1
2
�(T̂∼�n )2 , (6)

K�n =
1
2

v̂vv∼�h,n · v̂vv∼�h,n . (7)

In the above definitions, vvvh = (u,v) is the horizontal velocity,
T is the temperature anomaly [with the mean vertical profile
T (z) removed], and � is a proportionality depending on the
buoyancy frequency. In the absence of diffusion/dissipation,
the multiscale energy equations for a geophysical fluid sys-
tem can now be symbolically written out (location n in the
subscript omitted henceforth for simplicity):

∂A�

∂t
= −∇∇∇ ·QQQ�A +Γ�A +b�+S�A , (8)

∂K�

∂t
= −∇∇∇ ·QQQ�P +Γ�K −∇∇∇ ·QQQ�K −b� , (9)

for � = 0,1. The mathematical expressions and interpreta-
tions of the terms in Eqs. (8) and (9) are tabulated in Table
1; their names are the same as many others (e.g., Orlanski
and Katzfey, 1991; Chang, 1993; Yin, 2002)a. It should be
noted that all terms are localized both in space and in time;
in other words, they are all four-dimensional field variables,
distinguished notably from the classical formalisms in which
localization is lost in at least one dimension of space–time
to achieve the scale decomposition. Processes intermittent in
space and time are thus naturally embedded in Eqs. (8) and
(9). Figure 1 schematizes the local Lorenz cycle with a two-
window decomposition.

Although the terms in Eqs. (8) and (9) have the traditional
names, they are distinctly different from those in the tradi-
tional formalism. The most distinct terms are Γ�A and Γ�K .
For a scalar field S within a flow vvv = (u,v,w), the energy
transfer from other scale windows to window � rigorously
proves (Liang, 2016) to be (now the subscript n is supplied)

Γ�n = −E�n ∇∇∇ · vvv�S =
1
2

[(̂vvvS )
∼�
n · ∇∇∇Ŝ ∼�n − Ŝ ∼�n ∇∇∇ · (̂vvvS )

∼�
n ] ,

(10)
where E�n = [�(Ŝ ∼�n )2]/2, with � some constant, is the energy
on window� at step n [e.g., if S is the temperature anomaly,
then E�n is APE; refer to Liang (2016) for a detailed explana-
tion], and

vvv�S =
(̂S vvv)

∼�
n

Ŝ ∼�n
, (11)

is referred to as the S -coupled velocity. According to Eq.
(10), Γ�n has a Lie bracket form, reminding us of the Poisson
bracket in Hamiltonian mechanics [a recent reference linking
geophysical fluid dynamics (GFD) to Hamiltonian mechanics
is referred to Badin and Crisciani (2018)]. It also possesses a
very important property,

∑
�

∑
n

Γ�n = 0 , (12)

as first proposed in Liang and Robinson (2005) and later
proved in Liang (2016). Physically, this implies that the trans-
fer is a mere redistribution of energy among the scale win-
dows, without generating or destroying energy as a whole.
This property, though simple to state, does not hold in previ-
ous energetic formalisms (see below for a comparison to the
classical formalism). To distinguish it from those that may
have been encountered in the literature, it is termed “canoni-
cal transfer”.

Canonical transfer is fundamentally associated with en-
ergy conservation among scale windows during nonlinear in-
teractions; this forms the key of the mode–mode interaction.
That is to say, a mode may receive energy or lose energy
to another mode, but on the whole energy should be con-
served, as stated by Eq. (12). To further illustrate how canon-
ical transfer differs from the classical formalism, in the fol-
lowing we consider a special case, i.e., a case with the tradi-
tional Reynolds decomposition. Since by Liang and Ander-
son (2007), MWT is a generalization of the Reynolds decom-
position (i.e., the mean-eddy decomposition), we can special-
ize to consider this most particular case. Now, consider a pas-
sive tracer S in an incompressible flow, and neglect diffusion
for simplicity:

∂S
∂t
+∇∇∇ · (vvvS ) = 0 . (13)

Perform a Reynolds decomposition S = S + S ′ (with S and
S ′ respectively denoting the mean and perturbation), and the

aNote that the time tendency in Eqs. (8) and (9) in Charney’s model is meaningless since the basic flow has been assumed to be steady. Nevertheless, it
has nothing to do with the other terms in the energy equation, in which we are interested most.
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Table 1. Mathematical expressions and physical interpretations for the energetics terms in Eqs. (8) and (9). The colon operator (:) in Γ�K
and Γ�A is defined such that, for two dyadic products AAABBB and CCCDDD, (AAABBB) : (CCCDDD) = (AAA ·CCC)(BBB ·DDD). For details, refer to Liang (2016).

Symbol Mathematical expression Physical interpretation

K�
1
2

v̂vv∼�h · v̂vv∼�h KE on window �

QQQ�K
1
2

(v̂vvvvvh)∼� · v̂vv∼�h Flux of KE on window �

Γ�K
1
2

[(v̂vvvvvh)∼� : ∇∇∇v̂vv∼�h −∇∇∇ · (v̂vvvvvh)∼� · v̂vv∼�h ] Canonical transfer of KE to window �

QQQ�P
1
ρ0

v̂vv∼�P̂∼� Pressure flux on window �

b� − g

T
ŵ∼�T̂∼� Buoyancy conversion on window � (defined as negative if the

conversion is from APE to KE)

A�
1
2
�(T̂∼�)2, � =

g

T (g/cp −L)
APE on window �

QQQ�A
1
2
�T̂∼�(v̂vvT )∼� Flux of APE on window �

Γ�A
�

2
[(̂vvvT )

∼� · ∇T̂∼� − T̂∼�∇∇∇ · (̂vvvT )
∼�

] Canonical transfer of APE to window �

S�A
1
2

T̂∼�̂(wT )
∼� ∂�
∂z

APE generation due to the vertical variation of statistic stability
(s) on window �

evolutions of the mean energy and eddy energy (variance) can
be shown to be (e.g., Pope, 2000):

∂

∂t

(
1
2

S
2
)
+∇∇∇ ·

(
1
2

v̄vvS
2
)
= −S∇∇∇ · (vvv′S ′) , (14)

∂

∂t

(
1
2

S ′2
)
+∇∇∇ ·

(
1
2

vvvS ′2
)
= −vvv′S ′ · ∇∇∇S . (15)

the terms in divergence form are generally understood as the
transports of the mean and eddy energies, and those on the
right-hand side as the respective energy transfers. The lat-
ter are usually used to explain the dynamical source of the
mean flow–eddy interaction. Particularly, when S is a veloc-
ity component, the right-hand side of the eddy energy equa-
tion, R=−vvv′S ′ ·∇∇∇S , has been interpreted as the rate of energy
extracted by Reynolds stress, or “Reynolds stress extraction”
for short, against the mean field to fuel the eddy growth; in
the context of turbulence research, it is also referred to as
the “rate of the turbulence production” (Pope, 2000). It has
also been extensively utilized in dynamic meteorology to ex-
plain phenomena such as cyclogenesis, eddy shedding, etc.
However, Holopainen (1978) and Plumb (1983) found that
the transport-transfer separation is not unique and hence the
resulting transfer seems to be ambiguous. Moreover, the two
energy equations do not, in general, sum to zero on the right-
hand side. This is not what one would expect of an energy
transfer, which by physical intuition should be a redistribu-
tion of energy among scale windows, and should not generate
nor destroy energy as a whole.

With the MS-EVA formalism, these are not issues any
more. In this special case, the energy equations in the form of
Eqs. (8) or (9) become [see Liang (2016) for rigorous deriva-
tion; for a brief illustration, refer to the second section of

Liang and Wang (2018)]

∂

∂t

(
1
2

S
2
)
+∇∇∇ ·

(
1
2

v̄vvS
2
+

1
2

S vvv′S ′
)
= −Γ , (16)

∂

∂t

(
1
2

S ′2
)
+∇∇∇ ·

(
1
2

vvvS ′2+
1
2

S vvv′S ′
)
= Γ , (17)

where
Γ =

1
2

[S∇∇∇ · (vvv′S ′)− vvv′S ′ · ∇∇∇S ] . (18)

This is in sharp contrast to the traditional one: now, one
can see that the right-hand side is balanced. This Γ is the
“canonical transfer” in this special case. Previously, Liang
and Robinson (2007) illustrated, for a benchmark hydrody-
namic instability model (Kuo, 1949) whose instability struc-
ture is analytically known, the traditional Reynolds stress ex-
traction R does not give the correct source of instability, while
Γ does. We further remark that these equations result from
the MWT-based multiscale energetics formalism, which are
rigorously derived through reconstructing atom-like building
blocks of multiscale transports [see Liang (2016)]; and they
are unique. More specifically, if S is temperature T , then Γ
is baroclinic canonical transfer (ΓA),

ΓA =
�

2
[T∇∇∇ · (vvv′T ′)− vvv′T ′ · ∇∇∇T ] , (19a)

with � a multiplier depending on the lapse rate (see Table 1);
if S is velocity (say u or v), Γ is barotropic canonical trans-
fer (ΓK). With a background field vvv = (ū(y,z),0,0),ΓK boils
down to, in terms of u and v,

ΓK =
1
2

[ū∇∇∇ · (vvv′u′)− vvv′u′ · ∇∇∇ū] . (19b)

From this formula, it can clearly be seen that, within a strati-
fied baroclinic flow (as in the Charney model), perturbations
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can also extract kinetic energy from the vertical shear of the
basic flow.

It has been established that the canonical transfer terms
(Γ�A and Γ�K ) in Eqs. (8) and (9) are very important. Particu-
larly, the mean-to-eddy parts of them correspond precisely to
the two important geophysical fluid flow processes, i.e., baro-
clinic instability and barotropic instability (Liang and Robin-
son, 2007); details are referred to a recent publication (Liang,
2016). For notational convenience, they are written as BC and
BT, respectively. A set of criteria was then derived in Liang
and Robinson (2007) for instability identification:

(1) A flow is locally unstable if BC+BT > 0, and vice
versa;

(2) For an unstable system, if BT > 0 and BC � 0, the
instability the system undergoes is barotropic;

(3) For an unstable system, if BC > 0 and BC � 0, then
the instability is baroclinic; and

(4) If both BT and BC are positive, the system must be
undergoing a mixed instability.

Because of their physical meanings, in the following we
refer to BT and BC as barotropic transfer and baroclinic
transfer, respectively.

We remark that the concept of barotropic and baroclinic
instabilities here is in the classical sense (e.g., Pedlosky,
1987): a flow is baroclinically (barotropically) unstable if
potential (kinetic) energy is the only form of energy trans-
ferred from the mean flow to perturbation fields. However,
the energy transfer terms used to infer instabilities, as de-
noted by BC and BT, are different from the traditional ones.
In Eq. (7b), on spatial integration the first term (in a diver-
gence form) on the right-hand side vanishes, whereas the
second term −vvv′u′ · ∇∇∇ū does not. The second term can be
further divided into two parts: −u′v′∂ū/∂y and −u′w′∂ū/∂z.
In the case of quasi-geostrophic flow, because w vanishes
to the first order, the kinetic energy transfer related to the
vertical shear, −u′w′∂ū/∂z, is zero. (In fact, because of this,
barotropic instability is conventionally believed to be related
only to the horizontal shear of the mean flow). But, it cannot
be totally ignored. When localized instability is considered, it
may appear significant locally, though globally it is still very
small. Moreover, in some limiting cases, it could be signifi-
cant. These are indeed what we will find soon in the Charney
model (see below).

3. A brief review of the Charney model

3.1. Basic state
The Charney model talks about the instability of a con-

stant shear flow in a stratified, semi-infinite atmosphere on
a β-plane to quasi-geostrophic perturbations. The mean state
(denoted by an overbar) of the Charney model therefore as-
sumes

ū = Λz , v̄ = 0 , w̄ = 0 , (20)

where Λ is a constant. The mean temperature field (T ) and
mean density (ρ̄) are determined by the thermal wind relation

− 1

T

∂T
∂y
=

f ū
g

⎛⎜⎜⎜⎜⎝− 1

T

∂T
∂z
+

1
ū
∂ū
∂z

⎞⎟⎟⎟⎟⎠ . (21)

With T and ρ̄, the mean pressure field (p̄) is obtained accord-
ingly by the equation of state

p̄ = ρ̄RT . (22)

The domain of the Charney model is semi-infinite with a solid
flat bottom boundary. The boundary conditions are, therefore,

w̄ = 0 , z = 0 , (23a)
p̄ = 0 , z→∞ . (23b)

3.2. Eigenvalue problem
Charney’s problem of baroclinic instability is governed

by the linearized quasi-geostrophic PV equation (e.g., Char-
ney, 1947; Kuo, 1952; Green, 1960; Burger, 1962; Miles,
1964; Lindzen and Farrell, 1980)(

∂

∂t
+ ū
∂

∂x

)
q′+ v′β̂ = 0 , (24)

where q′ is the perturbation PV and β̂ = q̄y is the meridional
gradient of the background PV:

q′ = ∇∇∇2Ψ ′+
f 2
0

ρ̄

∂

∂z

(
ρ̄

N2
∂Ψ ′

∂z

)
, (25a)

β̂ = β− f 2
0

ρ̄

∂

∂z

(
ρ̄

N2
dū
dz

)
, (25b)

with f0 the Coriolis parameter at a fixed latitude, β = fy, Ψ ′,
the perturbation streamfunction, and others are conventional.
In the Charney model, the above two equations are simplified
by assuming the buoyancy frequency N to be constant and
ρ̄ = ρ0e−z/Hρ , with Hρ being a density scale height, which
is also a constant. Under these assumptions, Eqs. (25a) and
(25b) can be simplified as

q′ = ∇∇∇2Ψ ′+
f 2
0

N2
∂2Ψ ′

∂z2 −
f 2
0

HρN2
∂Ψ ′

∂z
, (25c)

β̂ = β+
f 2
0 Λ

HρN2 . (25d)

The boundary conditions are w′ = 0 at the ground, i.e.,

∂

∂t
∂Ψ ′

∂z
−Λ∂Ψ

′

∂x
= 0 , z = 0 , (26a)

and

Ψ ′ → 0 , z→∞ . (26b)

Following convention, we look for normal modal solu-
tions of the form

Ψ ′ = Ψ̃ (z)eik(x−ct)+ily , (27)

where k and l are respectively the zonal and meridional
wavenumber, and c is the complex phase velocity. Substitu-
tion of Eq. (27) into Eqs. (24) and (26) gives

d2Ψ̃

dz2 −
1

Hρ

dΨ̃
dz
+

N2

f 2
0

(
β̂

Λz− c
−K2
)
Ψ̃ = 0 , (28a)
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where K2 = k2+ l2, and

c
dΨ̃
dz
+ΛΨ̃ = 0 , z = 0 , (28b)

Ψ̃ → 0 , z→∞ . (28c)

These equations form an eigenvalue problem. Since Eq. (28a)
has a non-constant coefficient, its analytical solution is not
easy to obtain, but can be solved conveniently through nu-
merical method.

As in Chai and Vallis (2014), we first non-dimensionalize
Eqs. (28a)–(28c) using

z = Hρẑ , c = ΛHρĉ , K = L−1
R K̂ , (29)

where hats denote nondimensional quantities, and the hori-
zontal scale is the Rossby radius defined as LR = (NHρ)/ f0.
Equations (28a)–(28c) then become

d2Ψ̃

dẑ2 −
dΨ̃
dẑ
+

(
1+γ
ẑ− ĉ

− K̂2
)
Ψ̃ = 0 , (30a)

where γ = (βL2
R)/(HρΛ), and

ĉ
dΨ̃
dẑ
+ Ψ̃ = 0 , ẑ = 0 , (30b)

Ψ̃ → 0 , ẑ→∞ . (30c)

The nondimensional parameter γ in Eq. (30a) is known as
the Charney–Green number. It is the ratio of the scale height
of the atmosphere Hρ to the dynamic vertical scale h =
( f 2

0 Λ)/(βN2) (Held, 1978). As we can see, all the informa-
tion on the mean flow (shear, stratification, latitude, etc.) is
absorbed into this single parameter. When γ � 1, the solu-
tion corresponds to the deep mode; whereas, when γ � 1,
the solution approaches the shallow mode (e.g., Held, 1978;
Branscome, 1983).

In this study, we restrict ourselves to midlatitude (say
45◦N) waves, with f0 and β fixed. The vertical shear Λ is in-
dependent of Hρ and N, whereas the latter two parameters are

associated with each other through the thermal wind relation
[Eq. (21)] and the equation of state [Eq. (22)]. For instance,
when Hρ = 8800 m, N is about 0.0138. That is to say, γ is
only determined by two parameters, (Hρ,Λ) or (Hρ,N). Here,
we use Hρ and Λ. Figure 2 shows the relation between Hρ
and N, and the distribution of γ on the (Hρ,Λ)-plane. We see
that the larger the Hρ, the smaller the N; and, if Hρ is fixed, γ
increases as Λ decreases, and vice versa. For convenience, we
fix the scale height Hρ and let Λ vary in order to investigate
the influence of γ on the energetics. In this study, we choose
Hρ = 8800 m (other values, e.g., 8200 m and 9400 m, have
also been checked, and the results are similar).

We remark that Nakamura (1992) has once discussed
the effect of vertical shear on the structure of baroclinic
waves. But the conclusion of this study is quite different
from that of Nakamura (1992). According to Nakamura
(1992), the vertical scale of baroclinic waves is inversely
proportional to the vertical shear of the wind speed: h ≈
f Lx/(2π

√
N2+ (∂ū/∂z)2). However, in the Charney model,

both the vertical scale h and the wavelength Lx of the most
unstable baroclinic wave are proportional to the vertical
shear: h = f 2∂ū/∂z/(βN2) and Lx = f∂ū/∂z/(βN) = Nh/ f
(Green, 1960; Held, 1978; Branscome, 1983). This means
that stronger vertical shear corresponds to longer and deeper
waves, as opposed to the conclusion of Nakamura (1992).

3.3. Most unstable modal solution

Without losing generality, let the meridional wavenumber
l = 0. The most unstable mode therefore does not vary with
y (e.g., Lindzen and Farrell, 1980). Theoretically, the model
height is infinite. In practice, it is set to be finite but with
enough high altitude (50Hρ in this study). Discretize Eqs.
(30a)–(30c) in the vertical direction, and the resulting eigen-
value problem is solved through iteration.

Figure 3 shows the variations of the nondimensional
wavenumber, growth rate and phase speed of the most un-
stable mode with γ. We see that the wavenumber increases
with γ, whereas the growth rate and phase speed decrease
with γ. [Note that the nondimensional maximum growth rate

Fig. 2. (a) The relation between scale height Hρ (meter) and buoyancy frequency N (s−1). (b) Distribution of
the Charney–Green number on the (Hρ, Λ)-plane, where Λ is the vertical shear (10−3 s−1).
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Fig. 3. Nondimensional (a) wavenumber (k), (b) maximum growth rate, and (c) phase speed (cr) of the most
unstable mode as a function of the Charney–Green number.

does not decrease monotonically, and it peaks at γ = 0.4 (Fig.
3b). But its dimensional counterpart [multiplied by ( f0Λ)/N)
is monotonically decreasing with γ]. This implies that a
smaller γ corresponds to longer and deeper waves with larger
growth rates and faster phase speeds. In particular, when γ =
1.33, the nondimensional wavenumber k̂ of the most unstable
mode is 1.4, corresponding to the dimensional wavenumber
k = 1.4×10−6 m−1 and wavelength L= 4504 km. And the cor-
responding nondimensional and dimensional growth rates are
0.3168 and 0.0175 hr−1, respectively, implying that the wave
amplitude will double in 40 hours. These results are consis-
tent with previous studies, such as Kuo (1952, 1979), Gall
(1976b), Lindzen and Farrell (1980), Farrell (1982), Chai and
Vallis (2014), to name a few.

The perturbation fields of pressure, velocity and temper-
ature are required, the solutions of which can be found from
the literature (e.g., Kuo, 1952; Charney and Drazin, 1961;
Gill, 1982). In nondimensional form, they are given by, re-
spectively,

p′ = ρ0 f0Ψ ′ , (31a)

v′ =
i f0k̂
NHρ

Ψ ′ , (31b)

u′ = − i

Nk̂

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣Λk̂2(ẑ− ĉ)− N2Hρ

f 2
0

β

⎤⎥⎥⎥⎥⎥⎦v′ −Λdv′

dẑ

⎫⎪⎪⎬⎪⎪⎭ , (31c)

w′ = − f0Λ
N2

[
(ẑ− ĉ)

dv′

dẑ
− v′
]
, (31d)

and

T ′ = − iNHρ
k̂

⎡⎢⎢⎢⎢⎣v′R + T
gHρ

(
dv′

dẑ
− v′
)⎤⎥⎥⎥⎥⎦ . (31e)

Since Ψ ′, the eigenvector, is already known, all the perturba-
tion fields can now be determined.

The computed perturbation fields for the most unstable
mode are shown in Fig. 4. Here, we show three typical cases:
two extreme cases (the deep mode γ = 0.1 and the shallow
mode γ = 10), and one moderate case (γ = 1). We can see that
the wave structure varies with γ. Firstly, consistent with the
analysis in the preceding parts, for γ = 0.1 the wave is long
(∼9LR) and deep (Figs. 4e–h), whereas for γ = 10 the wave
is short (∼0.7LR) and shallow (Figs. 4i–l). Secondly, the bot-
tom trapping is stronger for larger γ. It can be seen that the
upper-level centers for γ = 0.1 are more significant than those
for γ = 10, especially in p′ and u′. Thirdly, in the deep mode
limit (γ = 0.1) the kinetic process dominates the thermal pro-
cess (refer to the relative magnitude of u′ and T ′), whereas in
the shallow mode limit (γ = 10) the relation reverses.

Apart from the major discrepancies described above,
these three cases share much in common in terms of wave
structure. Most conspicuous are the bottom-trapped feature
in the distributions of p′ (Figs. 4a, e and i) and T ′ (Figs. 4d,
h and l), and the phase-line tilting with altitude, although the
tilting varies from field to field. In the field of p′, the zero-
isopleths have their greatest inclination in the lower levels
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Fig. 4. Perturbation fields at the time instant when the maximal p′ is taken to be 10 hPa at the surface: (a–d) γ = 0.1, (e–h)
γ = 1, and (i–l) γ = 10. The field in each subplot has been normalized by its maximum. The scale height Hρ = 8800 m, and the
Rossby radius LR = 1218 km.

and become nearly vertical in higher levels, as do the troughs
and ridges. The phase difference is about π/2 through the
vertical extent. The v′ field (not shown) has a structure sim-
ilar to p′, but with a phase lag of π/2. The fields of u′ have
two extreme centers vertically (Figs. 4b, f and j): one is at
the bottom, and the other at upper levels. It can be seen that
the zero-isopleths are nearly vertical at the bottom (except in
Fig. 4f as γ = 1) and in the upper atmosphere, and tilt back-
ward rapidly at lower levels. The phase lag between the upper
layer and the bottom layer is from 2π/3 to π. Distinctly differ-
ent from u′ and v′, the perturbation vertical velocity (Figs. 4c,
g and k) attains its maximum value at middle-to-upper levels,
with phase lines tilting slightly toward the west (except in
Fig. 4k as γ = 10). The temperature has different inclinations
in the lower layer and upper layer (Figs. 4d, h and l). It first
tilts eastward in the bottom layer, then changes to the oppo-
site direction in the middle layer, and becomes nearly vertical
in the upper layer. This leads to the result that the phase of
the upper layer (2π/3 ∼ π) falls behind that in the lower layer.
All these structures are consistent with previous studies (e.g.,
Charney, 1947; Kuo, 1952, 1979; Green, 1960; Gill, 1982;

Branscome, 1983).

4. MS-EVA analysis

4.1. MS-EVA setup

The dataset obtained is in Cartesian coordinates. The se-
ries span four periods, which are divided into 28 time steps.
In the x-direction the domain covers four wavelengths; it is
discretized into 200 grid points. In the y-direction five grid
points are chosen, with a spacing the same as Δx. In the ver-
tical, 300 levels from bottom up are selected. Since what we
are concerned with is the interaction between the basic state
and the perturbations, the background-scale bound j0 is cho-
sen to be zero. In Liang and Anderson (2007), it was proven
that this makes a field precisely its corresponding mean field.

For this study, three typical cases are chosen (refer to Fig.
4), i.e., two extreme cases (the deep mode limit γ = 0.1 and
the shallow mode limit γ = 10) and a moderate case (γ = 1).
The parameters of the corresponding mean flows are listed in
Table 2. Given the values of these parameters, the mean fields
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Table 2. Values of the key parameters of the mean states and the corresponding most unstable modes of the three selected cases.

Parameters for the mean state Information on the most unstable mode

β Hρ Λ Wavelength L Growth rate kci Phase speed cr
(m−1 s−1) (m) (s−1) (km) (hr−1) (m s−1)

γ = 0.1 1.67×10−11 8800 0.0282 10938 0.2312 185.64
γ = 1.0 — — 2.80×10−3 5469 0.0235 7.40
γ = 10 — — 2.82×10−4 890 0.0021 0.11

Fig. 5. Mean state of Charney’s model as γ = 1: (a) zonal velocity (m s−1); (b) pressure (Pa); (c) temperature
(K); and (d) density (kg m−3).

can be generated as shown in section 3.1. A reconstruction of
the mean state of the Charney model as γ = 1 is shown in
Fig. 5. Finally, the mean fields, together with the perturbation
fields, form the input of MS-EVA.

4.2. Results analysis: γ = 1
4.2.1. Perturbation fields

With the datasets generated, a two-scale decomposition
is performed for each field. To present the perturbation fields,
we need only consider a particular instant. This is because,
as a result of linearization, solutions of the Charney model
are similar at all times, only with variations of magnitude
and phase. Any snapshot of a field is typical of the evolu-
tion pattern of that field throughout the duration. Hereafter,
we choose the time instant, at which the maximal value of p′
on the surface is taken to be 10 hPa, to display the energet-
ics. Moreover, as established by predecessors (and mentioned

before in this study), the most unstable mode corresponds to
the y-wavenumber l = 0, which implies that the instability
structure is y-independent. Therefore, only one x–z section is
enough for the analysis.

The perturbation fields are expected to be reconstructed
precisely on the perturbation-scale window; for example, p∼1

should be equal to p′, T∼1 should be T ′, etc., and this is in-
deed true (not shown). The distributions of eddy (i.e., pertur-
bation) APE (EAPE) and eddy kinetic energy (EKE), defined
by Eqs. (1) and (2) as γ = 1, are shown in Fig. 6. Obviously,
both EAPE and EKE are bottom-trapped. On the EAPE map
(Fig. 6a), the trapping is especially strong, with most EAPE
generally limited below the steering level (0.3Hρ). Above that
height, EAPE still exists, though in very small quantities; in
fact, on the zonally averaged EAPE profile, above 1Hρ, there
is a distinctly increasing trend with height (Fig. 6b). This fea-
ture seems to be odd but very robust (refer to the inset plot
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Fig. 6. EAPE (m2 s−2) and EKE (m2 s−2): (a) zonal section of EAPE; (b) zonal-mean EAPE; (c) zonal section
of EKE; and (d) zonal-mean EKE.

in Fig. 6b). We shall get back to this point in the following
subsection.

EKE is more colorful in structure (Fig. 6c). Apart from
the bottom-trapping feature, the distribution has an appealing
structure. Below 1Hρ, it tilts to the west with height; above
that, it becomes almost vertical. Besides, a secondary maxi-
mum center occurs at around 1Hρ where EAPE gets its min-
imum. This is more obvious in the zonally averaged profile
(Fig. 6d). We discuss this further later in the paper.

4.2.2. Baroclinic and barotropic canonical transfers

The canonical transfers correspond precisely to the insta-
bilities in geophysical fluid flows. We hence first look at these
fields. Shown in Figs. 7a and b are the sectional distributions
of the baroclinic transfer (BC) and its zonal average, respec-
tively. Generally, it is positive below 2Hρ; that is to say, in the
lower layer a baroclinic instability occurs, and the instability
strength increases toward the bottom. Above 2Hρ, BC is even
negative, though weak. In other words, the zonal flow within
that layer is baroclinically stable.

The barotropic canonical transfer (BT) is by comparison
two orders of magnitude smaller. What makes it merit par-
ticular attention is that it has a completely different structure
(Figs. 7c and d). Its variation in the zonal direction is trapped
in the middle layer. The zonal-mean BT takes its maximum
at about 0.6Hρ, and vanishes at the top as well as the bottom.

Since it is positive throughout the vertical extent (except for
the bottom), barotropic instability is occurring throughout the
fluid column, but with an intensification in the middle and
lower layers (between 0.5Hρ and 3Hρ). Note that 1Hρ is the
height where BC tends toward zero. This explains why the
tilting begins to inflect back at this height on the maps of u′
and p′ (Fig. 4), since the tilting signifies baroclinic instability
but not barotropic instability.

The distribution of the total canonical transfer (BC plus
BT) is quite similar to that for BC, especially in lower lay-
ers (below 1.5Hρ), as BT is very small compared to BC
(Fig. 8a). Their difference occurs in the middle-to-upper lay-
ers. Above 1.5Hρ, BT can be many times larger than BC,
which is negative (Fig. 8b). Together, they give a positive
value. This means that the system is unstable, and the in-
stability is mainly baroclinic. Besides, the baroclinic insta-
bility is bottom-trapped, agreeing with the traditional con-
clusion with the Charney model (e.g., Charney, 1947; Kuo,
1952; Green, 1960; Bretherton, 1966; Edmon et al., 1980).
However, here, we find that the instability is not purely baro-
clinic. BT, though two orders of magnitude smaller, has a
distinctly different structure. In fact, according to its formula
(ΓK) in section 2, the positive BT here is mainly a release
of the kinetic energy of the vertical shear. As we will see
soon below, it is this barotropic instability that causes the
perturbation fields to deviate from a pure bottom-trapped pic-
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Fig. 7. BC (m2 s−3) and BT (m2 s−3): (a) zonal section of BC; (b) zonal-mean BC; (c) zonal section of BT; and
(d) zonal-mean BT.

Fig. 8. Vertical profiles of (a) the total energy transfer (BC plus BT), and (b) the ratio of BC and
BT. Note that the gap around z = 2Hρ in (b) is left intentionally since BC is almost zero there.
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ture. Therefore, strictly speaking, the system is undergoing a
mixed instability.

4.2.3. Multiscale energy balance

The canonical transfers allow us to reconstruct the insta-
bility structures. One would expect that they can explain the
particular distributions of the perturbation energies. This is,
however, not completely true here. Comparing Fig. 7 to Fig.
6, it is apparent that BC is negative above 2Hρ, while EAPE
does not vanish there. Instead, a secondary EAPE center oc-
curs there. One would naturally ask how the system gains its
APE where there is no baroclinic instability at all. In the fol-
lowing, this, together with other issues, is addressed through
a detailed analysis of the MS-EVA terms.

We first look at the perturbation buoyancy conversion
(b1). Buoyancy conversion is important in that it mediates
between KE and APE and, in fact, is the only connection
between KE and APE. It is an important process in the at-
mosphere and ocean, which also exists in quasi-geostrophic
movements. Moreover, there are many studies concerning the
buoyancy conversion process in idealized quasi-geostrophic
models, such as Green (1960, 1970), Gall (1976b), Lapeyre
and Klein (2006), Ragone and Badin (2016), etc. Drawn in
Figs. 9a and b are, respectively, the sectional distribution of
b1 and its zonal average. A conspicuous feature is, again, the
bottom-trapped negative conversion, i.e., the conversion from
EAPE to EKE, with a maximum (in magnitude) taking place
around 0.4Hρ high. The conversion, however, reverses its di-
rection at the upper levels. That is to say, now it becomes
positive, though by comparison the conversion rate is much
smaller. The critical height where the reversion takes place is
about 2Hρ (refer to the inset plot in Fig. 9b). A similar ver-
tical structure of b1 can be seen in previous studies, such as
Green (1970), Gall (1976b), Branscome (1983), etc.

It should be pointed out that, besides the importance it-
self as a mechanism for energy to convert, buoyancy con-
version has been extensively utilized in the literature for lo-
calized baroclinic instability studies (e.g., Gill, 1982). This is
because of its localized nature, free of spatial averaging or in-
tegration, plus an intuitive argument that a negative buoyancy

conversion, i.e., a net conversion of EAPE to EKE, implies a
baroclinic instability. While this may seem to be true some-
times, physically it is groundless. If one goes back to the
fundamentals, one finds baroclinic instability and buoyancy
conversion are two completely different concepts. They may
correspond well on exceptional occasions, but generally the
correspondence may not be seen, as has been evidenced in
realistic problems (e.g., Zhao et al., 2016). In this problem,
the maximal conversion (around 0.4Hρ) does not correspond
to the maximal baroclinic instability (at the bottom), either.

Next, we look at the multiscale transport processes, i.e.,
which are represented by the QQQ terms in the MS-EVA bal-
ance. Here, we have only these terms on the perturbation win-
dow. Plotted in Figs. 10a and c are the horizontal (−∇∇∇ ·QQQ1

A,h)
and vertical (−∇∇∇ ·QQQ1

A,z) components of the EAPE flux con-
vergence, respectively, and their corresponding zonal aver-
ages (Figs. 10b and d). The zonally averaged −∇∇∇ ·QQQ1

A,h is
zero throughout the whole depth. This implies that EAPE is
transported horizontally without its vertical distribution being
changed, whereas another mechanism—namely, the vertical
flux—is mainly to transport EAPE from the middle layer (be-
tween 0.3Hρ and 1.2Hρ) to the bottom layer.

On the EKE, the transport processes could be due to both
the convergence of EKE flux (−∇∇∇ ·QQQ1

K) and the pressure flux
(−∇∇∇·QQQ1

P), either of which, as that for −∇∇∇·QQQ1
A, has a horizon-

tal component and a vertical component. Like −∇∇∇ ·QQQ1
A,h, the

zonal average of −∇∇∇ ·QQQ1
K,h is zero (Fig. 10f). For −∇∇∇ ·QQQ1

K,z
(Fig. 10h), it is positive below 2Hρ and negative above. Its
maximum and minimum centers occur at 0.3Hρ and 3Hρ,
respectively. This implies that −∇∇∇ ·QQQ1

K,z contributes to the
bottom trapping of EKE. Pressure working rate is quite dif-
ferently, as shown in Figs. 10i-h. Firstly, both −∇∇∇ ·QQQ1

P,h and
−∇∇∇ ·QQQ1

P,z tilt toward the west with height below 2Hρ, above
which the phase line is almost vertical (Figs. 10i and k). Sec-
ond, the zonal-mean profile of −∇∇∇ · QQQ1

P,h almost varnishes
(Fig. 10j), whereas −∇∇∇ ·QQQ1

P,z takes its minimum and maxi-
mum at 0.3Hρ and 1.5Hρ, respectively, and begins to change
sign at 1Hρ (Fig. 10l). The vertical extent between 0.4Hρ and
1.5Hρ corresponds to the inflection region in the zonal-mean

Fig. 9. (a) Zonal section of buoyancy conversion (m2 s−3), and (b) the zonal average.
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Fig. 10. (a–d) Horizontal and vertical EAPE flux convergences (m2 s−3): (a) zonal section of −∇∇∇ · QQQ1
A,h; (b) zonal-mean

−∇∇∇ ·QQQ1
A,h; (c) zonal section of −∇∇∇ ·QQQ1

A,z; (d) zonal-mean −∇∇∇ ·QQQ1
A,z. (e–h) As in (a–d), but for the EKE flux convergences

(−∇∇∇ ·QQQ1
K,h and −∇∇∇ ·QQQ1

K,z). (i–l) As in (a–d), but for pressure flux convergences (−∇∇∇ ·QQQ1
P,h and −∇∇∇ ·QQQ1

P,z), respectively.

distribution of EKE (Fig. 6d).
From the above observations, the energetics scenario is

now clear. We summarize it in Fig. 11. From the figure, the
system is undergoing a baroclinic instability at the bottom,
and most of the APE extracted at a height from the basic
temperature field essentially remains at that height, causing
T ′ fields to grow. T ′ is only horizontally transported through
EAPE flux without their magnitudes changing; in contrast,
EAPE is transported from the middle layer to the bottom
through the vertical EAPE flux to fill the depletion of EAPE
by buoyancy conversion. A part of EAPE is converted to
EKE. The conversion takes place from the bottom through
2Hρ, and is maximized at 0.4Hρ. The converted energy at a
level, however, does not remain at that level; rather, it is trans-
ported upward and downward through pressure flux. Conse-
quently, EKE from the conversion is concentrated toward the
bottom by −∇∇∇·QQQ1

K,z. Besides, the unique vertical distribution
of −∇∇∇·QQQ1

P,z causes the zonally averaged EKE profile to inflect
between 0.4Hρ and 1.5Hρ, and the secondary EKE center at
1Hρ. The scenario here is generally consistent with that de-

scribed by Gall (1976a).
On the other hand, the system also undergoes a barotropic

instability, though much weaker. In contrast to the bottom
trapping of its baroclinic counterpart, it takes place through-
out the computational domain, intensified at middle-to-upper
levels. This instability causes the system to extract energy
from the background flow to fuel the perturbation flow, which
makes the second extreme center in the field maps of u′ (Fig.
4f) and the middle-level maximum of w′ (Fig. 4g). The EKE,
however, does not all go to the perturbation flow; a small part
of it is converted into EAPE. This can be seen from the buoy-
ancy map (Fig. 9b), which becomes positive above 2Hρ. In
fact, this is the very reason why there is a small amount of
EAPE in the upper domain (Fig. 6b), though there is no baro-
clinic instability there.

4.3. Results analysis: γ = 0.1 and γ = 10

4.3.1. Perturbation energy

Figure 12 shows the sectional distributions and vertical
profiles of the two limiting cases. As we can see, in the deep
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Fig. 11. Schematic illustration of the instability and energetics scenario in Char-
ney’s model as γ = 1. The small arrows in the diagram indicate the directions
of various vertical transports (fluxes), with the width and length signifying the
transport strength. Refer to the main text for details.

Fig. 12. As in Fig. 6, but for (a–d) γ = 0.1 and (e–h) γ = 10.
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mode limit (γ = 0.1), EAPE is still bottom-trapped with a
secondary maximum center at 6Hρ (Fig. 12b), whereas the
bottom trapping of EKE becomes moderate and its middle-
level center at 5Hρ is much stronger than its bottom coun-
terpart (Fig. 12d). In the shallow mode limit (γ = 10), the
bottom trapping intensifies. Both maximum centers of EAPE
and EKE happen on the surface. Besides, the secondary EKE
center weakens greatly (Fig. 12h), whereas that of EAPE at
0.2Hρ is strengthened in a relative sense (Fig. 12f).

4.3.2. Canonical transfer

Figure 13 shows the vertical profiles of BC and BT of
the two limiting cases. It is surprising to find that the relative
importance of BC and BT varies with γ. In the deep mode
limit, BC (Fig. 13a) and BT (Fig. 13b) have almost the same
magnitude, with the latter even stronger than the former. BC
is still bottom-trapped (below 5Hρ), but its maximum occurs
above the surface rather than on it. BT is positive throughout
the whole depth except at the bottom. Vertically, there are two
maximum centers: one is at 1.5Hρ, and the other at 7Hρ. The
upper-level center is much stronger than the lower one. On
the contrary, in the shallow mode limit, BC (Fig. 13c) is four
orders of magnitude larger than BT (Fig. 13d). Therefore, the
system can be viewed as purely baroclinic. Note that in either
these two limiting cases (γ = 0.1 and γ = 10) or the moder-
ate case (γ = 1), BC is always negative in upper levels (Figs.
7b, 13a and 13c), indicating that the system is baroclinically

stable above a certain level.

4.3.3. Energy balance

The energetics balance also depends on γ. Figure 14
shows the vertical profiles of the zonally averaged b1, −∇∇∇ ·
QQQ1

A,z, −∇∇∇ ·QQQ1
K,z, and −∇∇∇ ·QQQ1

P,z. We can see that the structures
are generally similar to those of γ = 1, but with a big dif-
ference in magnitude. For the deep mode, b1, −∇∇∇ ·QQQ1

K,z and
−∇∇∇ ·QQQ1

P,z have the same magnitude, two orders larger than
−∇∇∇ ·QQQ1

A,z (Fig. 14b). b1 is negative below 7Hρ and positive
above (Fig. 14a). −∇∇∇·QQQ1

K,z is very strong and it has two max-
imum centers corresponding to that of EKE (Fig. 14c). There-
fore, together with BC (Fig. 13a) and BT (Fig. 13b), the en-
ergy flow is that the perturbation obtains APE from the mean
flow via baroclinic instability at low levels. Most of the EAPE
is then converted to EKE through b1 and the remaining part
is transported downward by EAPE flux. Meanwhile, the flow
is also undergoing a strong barotropic instability. The kinetic
energy transfer from the mean flow to the perturbation mainly
happens at upper levels. Then, EKE is transported via EKE
flux and pressure flux to the lower levels. Therefore, the low-
level EKE center benefits from both BC and BT, whereas the
upper-level EKE center arises mainly from BT. In the upper
layer, a small part of EKE is converted to EAPE, maintaining
the secondary upper-level center in T ′.

For the shallow mode, the perturbation energy is mainly

Fig. 13. Vertical profiles of zonal-mean (a, c) BC and (b, d) BT: (a, b) γ = 0.1; (c, d) γ = 10.
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Fig. 14. As in Fig. 13, but for the conversion and transport terms: (a–d) γ = 0.1; (e–h) γ = 10.

balanced by three processes, i.e., BC (Fig. 13c), b′ (Fig. 14e),
and −∇∇∇ ·QQQ1

P,z (Fig. 14h), since BT (Fig. 13d), −∇∇∇ ·QQQ1
A,z (Fig.

14f), and −∇∇∇·QQQ1
K,z (Fig. 14g) are several orders of magnitude

smaller. b1 is negative and positive below and above 0.2Hρ,
respectively (Fig. 14e). −∇∇∇ ·QQQ1

P,z is positive at the surface,
negative in the lower layer, and positive at upper levels (Fig.
14h). The energy balance therefore becomes straightforward.
The perturbation first obtains EAPE through BC in lower lev-
els; then, part of it is converted to EKE; meanwhile, pressure
flux transports EKE to the bottom and upper levels, which
results in the secondary center on u′ and p′; at upper levels,
EKE is converted back to EAPE, resulting in the secondary
center in T ′.

4.4. Correspondence in the real atmosphere

As presented above, we have found that the Charney
model, which has been considered as a purely baroclinic
model, actually also experiences barotropic instability pro-
cesses. That is to say, apart from the energy from baroclinic
canonical transfer, barotropic canonical transfer is also an

important source of energy for the most unstable Charney
mode. This phenomenon has actually been observed in the
real atmosphere. The waves over East Asia, which have been
claimed to be of baroclinic origin, reveal similar behavior.
Our recent study (Zhao et al., 2018) showed that these waves
have two sources in East Asia: a northern one, which is lo-
cated on the lee side of the Mongolian Plateau at middle
and high latitudes; and a southern one, which generally co-
incides with the East Asian subtropical jet. MS-EVA diag-
noses show that the waves in the southern branch experience
strong baroclinic instability in the middle and lower layers,
and strong barotropic instability in the upper layer; whereas,
in the northern branch, the waves derive mainly from baro-
clinic instability [cf. Figs. 6 and 8 in Zhao et al. (2018)]. It
is worth noting that the southern branch waves are located in
the center of the jet stream, where the vertical shear is large,
whereas in the north the vertical shear is small. These scenar-
ios correspond qualitatively to the cases of γ = 1 and γ = 10,
respectively, in this study.

It should be noted that, although the second maximum of
the eddy energy in the upper levels in the Charney model can
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correspond to the observed second peak of eddy activity near
the tropopause (e.g., Kao and Taylor, 1964; Lorenz, 1967),
they actually come from different mechanisms. As discussed
above, the upper-level energy center in the Charney model is
largely attributed to barotropic instability, whereas that ob-
served near the tropopause is mainly due to buoyancy con-
version and vertical transport of energy (e.g., Simons, 1972;
Gall, 1976a; Simmons and Hoskins, 1978). Moreover, in the
real extratropics, kinetic energy is mainly transferred from
eddy to mean flow (e.g., Chang and Orlanski, 1993), which
is opposite to that in the Charney model; and this process is
mainly caused by the horizontal shear of the background flow
(e.g., Deng and Mak, 2006; Zhao et al., 2018), whereas the
Charney model does not at all have horizontal shear in the
basic wind.

5. Conclusions

The Charney model is reinvestigated using the MS-EVA
method developed by Liang and Robinson (2005) [see Liang
(2016) for the updated version], which is based on a novel
functional analysis tool—namely, the MWT (Liang and An-
derson, 2007). For the first time, we are able to obtain a rel-
atively complete instability structure, though this model as a
prototype of baroclinic instability has been extensively stud-
ied before. Different from the traditional belief, the Char-
ney model actually undergoes a mixed instability; that is to
say, the instability is both baroclinic and barotropic, which
are represented respectively by baroclinic canonical transfer
(BC) and barotropic canonical transfer (BT) in the MS-EVA.
The resulting BC has a vertical distribution agreeing with the
traditional results, i.e., it is bottom-trapped, almost vanishing
at the middle and upper levels. However, BC alone cannot
explain why there exist temperature oscillations at the upper
levels, and why there is a second extreme on the perturbation
flow and pressure fields. Our study shows that a barotropic in-
stability, though much weaker for most of the cases, actually
exists throughout the fluid column. In the bottom region, it is
overwhelmed by the baroclinic instability, but above that re-
gion where BC is small, its effect becomes significant. So, the
instability is actually a mixed one. Besides, it is found that the
relative importance of baroclinic instability and barotropic in-
stability varies with the Charney–Green number γ, the ratio
of atmosphere scale height Hρ, and the perturbation vertical
scale. In the shallow mode limit (γ � 1), barotropic insta-
bility is so weak that the system can be viewed as purely
baroclinic. But, in the deep mode limit (γ � 1), barotropic
instability is strong; in fact, it can be even stronger than baro-
clinic instability.

Accordingly, the energy balance and the maintenance of
the upper-level centers in p′, u′, and T ′ in the Charney model
also depend on γ. When γ� 1, BC is several orders of mag-
nitude larger than BT. Therefore, the system can be viewed
as purely baroclinic, and the energy source is BC only. The
scenario of the energetics processes can be summarized as
follows: First, the system receives EAPE through baroclinic

instability at the bottom. Then, most of the extracted APE
goes to the perturbation temperature and causes it to grow, but
a small part is converted into EKE, and the converted EKE is
brought downward and upward through pressure flux, result-
ing in the bottom-trapped feature and the secondary centers
in u′ and p′. In the upper levels, a part of the EKE transported
by pressure flux is converted to EAPE, leading to the forma-
tion of the secondary center in T ′.

In contrast, for small γ, BC and BT are of the same or-
der of magnitude. The energetics scenario is as follows: At
the bottom, the system is undergoing a baroclinic instability.
Most of the extracted APE goes to the perturbation tempera-
ture and causes it to grow, but a small part is converted into
EKE, and the converted EKE is brought downward through
pressure flux and EKE flux, making the perturbation flow
fields become trapped at the bottom too. In the meantime,
the system is also undergoing a barotropic instability, which
becomes dominant at middle-to-upper levels, where the baro-
clinic instability stops functioning, and where the tilting on
the maps of u′ and p′ becomes rectified. This explains why
there is a second extreme center on the perturbation flow
maps, and why EKE has an inflection on its vertical profile.
Besides, a part of the EKE through the barotropic instabil-
ity is converted to EAPE, providing the energy source for
the observed oscillations of temperature at the upper heights,
which, though identified long before, have been generally
overlooked.
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