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Abstract
The rate of warming of the Arctic surface temperature has exceeded that of the global surface temperature in recent dec-
ades. However, the underlying process and causes of the long-term warming remain uncertain. In this paper, we explored 
the factors underlying variation in Arctic mean surface temperature anomalies (AMTA) using a piecewise linear model for 
1920–2018. This analysis indicated that the change in AMTA during the study period could be divided into three segments, 
with AMTA increasing from 1920 to 1938, declining from 1939 to 1976, and finally increasing rapidly after 1977. By a 
newly developed rigorous formalism of information flow, we found a one-way causality from the driving forces to AMTA. 
Moreover, the AMTA evolution could mainly be attributed to a combined effect of anthropogenic and natural factors (e.g., 
CO2, aerosol, and PDO). During the first warming stage (1920–1938), the PDO and aerosols are the main factors determining 
the change in AMTA. During the second warming stage (1977–2018), greenhouse gases, dominated by CO2, are the major 
factors accounting for the Arctic warming. In 1939–1976, the observed cooling may be associated with aerosols, clouds, and 
land use. A better understanding of the driving mechanism underlying AMTA evolution provides insight into the historical 
Arctic climate change, and can improve the prediction of future changes in AMTA.
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1  Introduction

The Arctic surface temperature has increased at more than 
twice the rate of the global average since 1979 (IPCC 2013). 
Amplified Arctic warming has contributed to a great extent 

to sustained global warming over the past decade (Huang 
et al. 2017). The increased Arctic temperature has diverse 
impacts on the atmosphere over the land and the sea, includ-
ing melting glaciers and permafrost (Hubberten et al. 2013; 
Kargel et al. 2013), breaking the ice-sheet mass balance 
(Shepherd et al. 2012), decreasing sea ice extent (Stroeve 
and Notz 2018; Ding et al. 2019; Jahn 2019), reducing pri-
mary productivity over North America (Kim et al. 2017; 
Blackport et al. 2019), and affecting the global climate 
system by altering the ocean circulations and atmosphere 
(Smith et al. 2019). The Arctic will become even warmer in 
the next few decades, as predicted by simulations based on 
multiple climate models (IPCC 2014).

In fact, the Arctic surface temperature has exhibited dif-
ferent trends in different periods, particularly from the twen-
tieth century. Many studies have focused on the cause of the 
mean temporal or spatial variation in Arctic temperature in 
recent years. Some studies have attributed the observed Arc-
tic warming to human influence (Gillett et al. 2008), Atlantic 
Multi-decadal Oscillation (Chylek et al. 2009), or a com-
bination of anthropogenic and natural causes (Jones et al. 
2013). Najafi et al. (2015) demonstrated that the increase 
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in greenhouse gases has warmed the Arctic, and other 
anthropogenic forcings (mainly aerosols) have cooled the 
Arctic over the past century. Smith et al. (2019) systemati-
cally explain the causes of Arctic warming, including the 
changes in solar radiation, volcanic eruptions and anthro-
pogenic aerosol emissions, decadal timescale variations in 
the Atlantic and Pacific sea surface temperatures, and so 
on. Moreover, numerous studies have shown that the Pacific 
Decadal Oscillation (Svendsen et al. 2018), black carbon 
(Shindell and Faluvegi 2009; Flanner 2013), orbital param-
eters (Crespin et al. 2013), as well as land use (Miao et al. 
2016) contributed to climate change in the Arctic. However, 
the mechanisms underlying changes in Arctic mean surface 
temperature anomalies (AMTA) in particular periods remain 
unclear and controversial.

Several studies have analyzed the causes of the long-
term evolution of the AMTA. One approach is the tradi-
tional statistical correlation analysis, but observed cor-
relations do not necessarily imply causation (Sies 1988; 
Yang et al. 2016). Another approach is the optimal fin-
gerprint method, which can be used to quantify the effects 
of external forces on temperature by statistical analysis 
based on a large amount of climate model data (Ribes 
et al. 2013). Shimizu et al. (2006) proposed a linear non-
gaussian acyclic model for causal inference, but it is yet 
to be validated in real-world applications. Traditionally, 
the Granger causality test is a common statistical method 
for causal inference (Granger 1969). It has been used in 
previous studies (Triacca et al. 2013; Stern and Kaufmann 
2014) of the causal relationship between radiative forcing 
and global temperature; these studies have shown that 
anthropogenic forcings cause variation in temperature, 
but the results are binary (yes or no), with much important 
quantitative information yet to be explored. Liang (2014) 
developed a novel and rigorous method that makes causal 
inference easy; it is based on information flow (IF), a real 
physical notion that is logically associated with causality 
and has recently been formulated ab initio (Liang 2008, 
2016). This method can be used to quantitatively evalu-
ate the two-way causal relationship between two-time 
series and to assess the importance of an individual driv-
ing force for temperature changes. It is worth mentioning 
that the IF formalism is rigorously established from first 
principles, rather than empirically defined as a hypothesis 
(ansatz), and, above all, the resulting formulas are very 
simple. It also should be mentioned that the IF formal-
ism was originally developed for the atmosphere–ocean-
climate science (e.g., the causal relation analysis between 
CO2 and global warming by Stips et al. (2016), but so far 
has been successfully applied to other earth system sci-
ences (e.g., Vannitsem et al. 2019), quantitative finance, 
neuroscience (Hristopulos et al. 2019), to name a few.

In this study, we aim to answer the two major ques-
tions. (1) What are the trends in AMTA from 1920 to 
2018, and do any segments within this period exhibit dif-
ferent trends? (2) What is the causality between AMTA 
variation and various driving forces, and is the causality 
one-way or two-way? We believe that the answers to these 
questions will improve our understanding of the mecha-
nism underlying the evolution of the Arctic temperature 
and increase our confidence in forecasting Arctic climate 
change.

2 � Data

2.1 � Arctic surface temperature datasets

Generally, Arctic surface temperature data lack either 
complete geographic coverage or field observations 
(Cowtan and Way 2014). To reduce the uncertainty of 
the AMTA, five temperature datasets were considered: 
the revision of HadCRUT by Cowtan and Way (2014), 
NASA GISTEMP (Hansen et  al. 2010), HadCRUT4 
(Morice et  al. 2012), NOAA (Vose et  al. 2012), and 
the reconstructed data by Huang et al. (2017) (hereaf-
ter H17). We specifically use the temperature anomalies 
(60°N–90°N) covering 1920–2018, and H17 data are from 
1920 to 2014.

2.2 � Driving force datasets

The annual global average radiative forcing data for 
1920–2018 were applied in this study (https​://www.pik-
potsd​am.de/~mmalt​e/rcps). This dataset includes annual 
data for (1) anthropogenic forcings, such as land use albedo 
(land use), total greenhouse gases (all-GHGs), CO2, N2O, 
total direct aerosol (aerosol), CH4, and cloud albedo effect 
(cloud); and (2) natural forcings, including solar irradiance 
forcing (solar) and volcanic stratospheric aerosol forcing 
(volcanic).

The forcing datasets were derived from a combination of 
the Meinshausen historical data for the period from 1976 to 
2005 (Meinshausen et al. 2011) and RCP4.5 for 2006–2018 
(Representative Concentration Pathway in which radiative 
forcing is stabilized at approximately 4.5 W/m2 per year after 
2100). We know there is considerable uncertainty in both the 
solar and volcanic forcings (Suo et al. 2013). To address this 
issue, six total solar irradiance (TSI) datasets were used. 
They are the reconstructed TSI data by Lean (2000) [includ-
ing the 11-year solar irradiance cycle (hereafter Lean1), plus 
the 11-year cycle with a background component (hereafter 
Lean2)], Lean and Rind (2008) (hereafter LR08), Crowley 
et al. (2003) (hereafter C03), Egorova et al. (2018) (hereafter 
E18), as well as data from https​://lasp.color​ado.edu/lisir​d/

https://www.pik-potsdam.de/~mmalte/rcps
https://www.pik-potsdam.de/~mmalte/rcps
https://lasp.colorado.edu/lisird/data/historical_tsi/
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data/histo​rical​_tsi/ [this data is reconstructed based on Wu et 
al. (2018) and Dudok de Wit et al. (2017), hereafter WD]. 
For time coverage, Lean1 and Lean2 are from 1920 to 2000, 
LR08 and WD from 1920 to 2018, C03 from 1920 to 1998, 
and E18 from 1920 to 2016.

Two natural internal modes that have been recognized as 
main drivers of climate variability over decadal time scales 
were also included, namely, Atlantic Multi-decadal Oscilla-
tion (AMO) and Pacific Decadal Oscillation (PDO) (Triacca 
et al. 2013). The time series of the monthly AMO index 
was obtained from the National Oceanic and Atmospheric 
Administration (NOAA) Earth System Research Labora-
tory’s Physical Sciences Division (https​://www.esrl.noaa.
gov/psd/data/times​eries​/AMO/), and the monthly PDO index 
was based on NOAA’s reconstruction of SST (ERSST Ver-
sion 4) (https​://www.ncdc.noaa.gov/telec​onnec​tions​/pdo/). 
The oceanic Atlantic meridional overturning circulation 
(AMOC) also affects the evolution of Arctic temperature. 
But we do not have its long-time record so far; it is hence 
not considered.

3 � Methods

3.1 � Segmenting the AMTA trend

A piecewise linear model was used to segment the trend 
in the AMTA from 1920 to 2018 in order to determine the 
years dividing segments and to characterize the trend in each 
stage (Liu et al. 2010). The main steps were as follows.

For a discrete time series containing T data points, con-
sider a linear regression model of a structural change with m 
breakpoints (BPs) T1, T2 , …, Tm(m + 1 segments or regimes):

where T0 = 0 , Tm = T  , and IA is an indicator variable that 
takes a value of 1 if event A is true and 0 otherwise. A 
continuity condition at each turning point is imposed: 
ai + biTi = ai+1 + bi+1Ti . Yt represents the observed depend-
ent variable at time t  , and ai and bi(i = 1, 2, …,m + 1 ) are 
trend regression coefficients for each segment. Nt is nor-
mally assumed to be autoregressive with a time lag of 1 or 
2 (AR(1) or AR(2)), treated as an unexplained noise term.

The BPs T1, T2 , …, Tm are treated as unknown. When 
T  observations on Yt are available, the first step is to 
estimate the unknown piecewise linear trend coeffi-
cients together with the positions of BPs. Supposing that 
Nt themselves can be regarded as independent random 
errors with mean zero and common variance �2

N
 , by the 

first- and second-order autoregressive models (AR(1) 
and AR(2)) as well as the model without autoregression 

(1)Yt =

m+1∑

i=1

I{Ti−1+1≤t≤Ti}(ai + bit) + Nt, (t = 1, 2,… , T)

(AR(0)), the noise term will be tentatively interpreted. 
Finally, the Monte Carlo method was used to estimate the 
uncertainties for all trend parameters (including the posi-
tions of BPs). To accurately estimate the standard devia-
tions of the fitted trend parameters, 10,000 pseudorandom 
series were generated to simulate the corresponding nor-
mally distributed independent and identically distributed 
residuals.

The number of structural breaks m is unknown; it is esti-
mated according to the least-squares principle. We assume it 
is known at the beginning, and then determine it by solving a 
model selection problem. The associated least-squares esti-
mates of the coefficients for the trends in each m-partition T1,  
T2 , …, Tm are calculated by minimizing the sum of squared 
residuals (Tomé and Miranda 2005):

The estimated BPs T1,  T2 , …, Tm are such that 
(T̂1, T̂2, ..., T̂m) = argminT1,...,Tm ST (T1, T2, ..., Tm) , satisfying 
the standard form of the Schwarz Bayesian information cri-
terion (BIC) (Ng and Perron 2005; Portnyagin et al. 2006):

In the above equation, Ŷt is the modeled value (versus the 
residual) of the dependent variable at time t , and q = 2m + 2, 
q = 2m + 3 , and q = 2m + 4 correspond to AR(0), AR(1), 
and AR(2), respectively. Those with the lowest and second‐
lowest BIC values were selected as the best and secondary 
models, respectively.

3.1.1 � Interannual trend in AMTA over the last 100 years

Figure 1 shows that various datasets yield different values 
but similar trends. All of the datasets exhibit an increasing 
trend in the annual mean AMTA. The temperature anoma-
lies from GISTEMP and Cowtan and Way are significantly 
higher than those from H17, while the values from NOAA 
are quite similar to the latter, and the those of HadCRUT4 
lie in between. To reduce the uncertainty of AMTA, we take 
account into all the datasets by taking the average of them; 
that is to say, the annual AMTA hereafter is the mean of that 
from these datasets.

Figure 2 summarizes variation in annual AMTA from 
1920 to 2018 and their corresponding trends based on dif-
ferent models with 0 to 5 BPs but without autoregression. 
Figure 3 shows the BIC values for different trend models 
applied to the time series of annual AMTA. The 2-BPs 
model with the lowest BIC value appeared to be the optimal 

(2)ST =

T∑

t=1

[
Yt −

m+1∑

i=1

I
{
Ti−1 ≤ t ≤ Ti

}
(ai + bit)

]2

.

(3)Sq = T ln

[
1

T

T∑

t=1

(Yt − Ŷt)
2

]
+ q ln T .

https://lasp.colorado.edu/lisird/data/historical_tsi/
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
https://www.ncdc.noaa.gov/teleconnections/pdo/
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choice (Figs. 2c, 3), while the 3-BPs model with the second-
lowest BIC value was suboptimal (Figs. 2d and 3). Through 
Monte Carlo simulation, for the optimal piecewise result 
(Fig. 2c), the BP values were largely independent, reliable, 
and relatively stable, as the respective uncertainty intervals 
of these BPs had no overlap and were relatively small. Com-
pared with the optimal 2-BPs model, the 0-BP and 1-BP 
models did not reproduce the cooling process. We hereafter 
evaluated the outputs of the 2-BPs model.

There are BPs in 1938 and 1976 according to the 2-BPs 
model. Based on this, the evolution of AMTA can be divided 
into three segments: (1) segment 1 (1920–1938), AMTA 
increased at a rate of 0.45 °C per decade; (2) segment 2 
(1939–1976), AMTA declined with a relatively weak cool-
ing trend of 0.18 °C per decade; (3) segment 3 (1977–2018), 
a warming trend was identified with a rate of increase of 

Fig. 1   Variation in the annual mean AMTA from 1920 to 2018. Data-
sets are from Cowtan and Way, GISTEMP, HadCRUT4, NOAA, and 
H17

Fig. 2   Variation in annual AMTA from 1920 to 2018 (black solid 
line). The red solid line indicates the corresponding linear trend, 
(a)–(f) show results based on different BP models (0–5 BPs, with-

out autoregression). Black dots plus blue error bars indicate the 
position(s) of the BPs and standard deviations
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0.54 °C per decade, much higher than that for segment 1. 
This indicates that AMTA increased rather rapidly, particu-
larly after 1977.

3.2 � Analysis of the causality between AMTA 
and driving forces

Causalities between the major driving forces and the AMTA 
time series were analyzed using the IF method. A detailed 
description is given in Liang (2014, 2016); the main steps 
are described here.

Given a two-dimensional nonlinear stochastic system 
with a vector field ( F1 , F2 ) and a matrix of stochastic per-
turbation amplitudes ( bij ), Liang proved that the rate of the 
information flowing from a component (say X2 ) to another 
component (say X1 ), denoted as T2→1 is, in a closed form,

(units: nats per unit time; simply referred to T2→1 as “infor-
mation flow” or “flow” if no confusion arises), where E is 
the mathematical expectation, and �1 is the marginal prob-
ability density of X1 . Equation (4) was first proved in 2008 
(Liang 2008); refer to a recent comprehensive study (Liang 
2016) for more details and, particularly, for multidimen-
sional cases. Remarkably, Eq. (4) has the strict principle of 
causality, i.e., that an event evolves independently of another 
if it does not have causality from the latter, naturally embed-
ded. T2→1 can be either zero or nonzero. A nonzero T2→1 
means X2 is causal to X1 , while a zero T2→1 means it is not.

(4)T2→1 = −E

(
1

�1

�(F1�1)

�x1

)
+

1

2
E

(
1

�1

�2(b2
11
+ b2

12
)�1

�x2
1

)

When only two-time series X1 and X2 are given, T2→1 can 
be obtained through statistical estimation (the multivariate 
series case is referred to Liang, 2016). For linear systems 
Liang 2014 established that the maximum likelihood estima-
tor (MLE) is very concisely expressed in the following form 
(units: nats per unit time):

where Cij represents the sample covariance between Xi and 
Xj  ,  and Ci,dj  is the covariance between Xi and 
Xj =

{
Xj,n+1−Xj,n

Δt

}
(Δt is the time step size). Note here we have 

abused the notation T2→1 for late convenience; here it is actu-
ally the MLE and hence should bear a hat. Ideally, if ||T2→1

|| 
is nonzero,X2 is causal to X1 , and if not, X2 is noncausal to 
X1 . However, in practice, statistical significance must be 
tested.

The above formula states that causality can be explicitly 
expressed as a combination of the sample covariance of 
the involved time series and their derivatives. Though with 
an assumption of linearity, it has been shown to be a good 
approximation for nonlinear time series, and it has been 
successfully validated with highly nonlinear touchstone 
systems that fail the classical causal inference techniques. 
However, when only two-time series X1 and X2 are con-
sidered (pairwise causality analysis), the results should be 
carefully justified, as indirect causality may be overlooked. 
Besides, in neglecting the variables other than the two 
under consideration, problems of spurious causality could 
arise. Fortunately, Liang (2018) established that the infor-
mation flow between two parties is invariant upon arbitrary 
nonlinear transformation of the remaining parties (the 3rd 
and/or 4th, 5th,…). That is to say, although we may not 
know how the role of the hidden 3rd party may play, the 
information flow between the two parties under considera-
tion is consistent, and hence the thus-inferred causality is 
relevant. Of course, the formula (5) is just the maximum 
likelihood estimator of the rigorously derived one (4), and 
hence the result may not be precise and must be justified.

A practical way is to perform statistical significance 
test, which is also made possible by Liang (2014) based 
on the observation that, for a large ensemble N  , the maxi-
mum likelihood estimate of a parameter approximately 
obeys a normal distribution near its true value with a vari-
ance 

(
C12

C11

)2

𝜎̂2
a12

 . Here 𝜎̂2
a12

 is determined as follows: Calcu-

late Iij = −
1

N

∑N

n=1

𝜕2 log 𝜌(�n+1��n;𝜃̂)

𝜕𝜃i𝜕𝜃j
 to form a Fisher informa-

tion matrix � . In the equation the conditional probability 
density function,

(5)T2→1 =
C11C12C2,d1 − C2

12
C1,d1

C2
11
C22 − C11C

2
12

Fig. 3   BIC values for different linear models applied to the time 
series of annual AMTA. AR(0)/AR(1)/AR(2) indicates the corre-
sponding autoregressive component. Note: “Asterisk” indicates the 
best model
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where Δt  is the time stepsize, and � =

(
b1 0

0 b2

)
 , 

� =

(
a11 a12
a21 a22

)
 , � =

(
f1
f2

)
 , include all the parameters. It is 

easy to show that the problem is decoupled (cf., Liang 
2014). Here only those in the first row are needed, which we 
denote as for short:� ≡ (f1, a11, a12, b1) (in the matrix they 
are evaluated with their corresponding MLEs). In statistics, 
it has been established that (N�)−1 can be taken as the covari-
ance matrix of 𝜃̂ (see Liang 2014 for references), from which 
𝜎̂2
a12

 is picked out. Given a significance level, the confidence 

interval then can be found based on 
(

C12

C11

)2

𝜎̂2
a12

 . For example, 
given a level of 90%, then the confidence level of the esti-
mated T2→1 should be

Notice that, if the size of the ensemble is not large 
enough, the maximum likelihood estimate will be an 
under-representation of the true variance, which could 
lead to misleading conclusions about causality. In this 
study, the confidence intervals are all given at the 90% 
level. In principle, provided that the calculated informa-
tion flow value is significantly different from zero (passes 
the significance test), a causal relationship then exists 
between the two-time series. But for the sake of safety, 

(6)�(�n+1 = �n+1��n = �n) =
1

(2�)b1b2

√
Δt

e
−
1

2
(�n+1−�n−�−��nΔt)

T(��TΔt)
−1
(�n+1−�n−�−��nΔt)

(7)

[
T2→1 − 1.65

(
C12

C11

)2

𝜎̂2
a12
, T2→1 + 1.65

(
C12

C11

)2

𝜎̂2
a12

]
.

here we discard small absolute information flows (< 0.1 
nat/ut) as insignificant, thanks to the quantitative nature 
of this novel causality analysis.

4 � Results

4.1 � Causal analysis between AMTA and the driving 
forces

We applied the IF method to explore the potential causality 
between multiple driving forces and AMTA (Table 1), spe-
cifically, All-GHGs, aerosol, CO2, land use, and cloud are 
included in anthropogenic forces, and natural forces contain 
Solar, Volcanic, AMO, and PDO. Because the bold numbers 
indicate that the absolute IF was larger than 0.1 nat/ut and 
significant at the 90% confidence interval (that is, the abso-
lute value of the IF is within the confidence interval); in this 
situation, there is a causal relationship between the driving 
forces and AMTA, and a greater IF means a greater causal-
ity. For the 0-BP model, the IF from anthropogenic forcing 
to AMTA is 0.332 ± 0.110 nat/ut and in the other direction 
is − 0.006 ± 0.003 nat/ut. It is clear that there is a one-way 
causality if the 0-BP model is considered, indicating that 
increased anthropogenic forcing is the main determinant of 
Arctic warming.

When applying the IF method to the best-fit 2-BPs model, 
the results are different from those of the 0-BP model. 

Table 1   Information flow between driving forces (anthropogenic forces: all-GHGs, aerosol, CO2, land use, and cloud; natural forces: solar, vol-
canic, AMO, and PDO) and AMTA variation

The unit time step is ut = 1 year. Causation significant at the 90% confidence level with an absolute IF larger than 0.1 nat/ut is shown in bold. The 
‘ ± errors’ represents the ± 90% confidence intervals

Driving forces Forces → AMTA (nat/year) AMTA → Forces (nat/year)

Breakpoints 0-BP 2-BPs 0-BP 2-BPs

Year 1920–2018 1920–1938 1939–1976 1977–2018 1920–2018 1920–1938 1939–1976 1977–2018

Total forcing 0.389 ± 0.115 0.520 ± 0.173 0.065 ± 0.058 0.332 ± 0.177  − 0.026 ± 0.063 0.000 ± 0.116  − 0.044 ± 0.039 0.021 ± 0.140
Antropogenic 0.332 ± 0.110 0.419 ± 0.179 0.058 ± 0.093 0.874 ± 0.225  − 0.006 ± 0.003 0.014 ± 0.019 0.008 ± 0.009 0.003 ± 0.010
All-GHGs 0.246 ± 0.096 0.474 ± 0.187 0.171 ± 0.138 0.744 ± 0.220  − 0.007 ± 0.001 0.002 ± 0.004 0.003 ± 0.003 0.002 ± 0.005
Aerosol 0.074 ± 0.054 0.561 ± 0.224 0.233 ± 0.151 0.019 ± 0.042  − 0.012 ± 0.003  − 0.046 ± 0.112  − 0.007 ± 0.011  − 0.037 ± 0.011
CO2 0.304 ± 0.106 0.470 ± 0.187 0.160 ± 0.134 0.892 ± 0.224  − 0.006 ± 0.002 0.002 ± 0.006 0.006 ± 0.005  − 0.003 ± 0.006
Land use 0.106 ± 0.065 0.263 ± 0.172 0.245 ± 0.150 0.194 ± 0.139  − 0.003 ± 0.006 0.020 ± 0.038 0.018 ± 0.023 0.025 ± 0.029
Cloud 0.081 ± 0.057 0.445 ± 0.204 0.234 ± 0.152 0.145 ± 0.117  − 0.008 ± 0.002  − 0.007 ± 0.059 0.011 ± 0.008  − 0.038 ± 0.012
Solar 0.018 ± 0.022 0.204 ± 0.162 0.008 ± 0.041  − 0.000 ± 0.001  − 0.008 ± 0.016 0.080 ± 0.098 0.010 ± 0.026 0.001 ± 0.001
Volcanic 0.005 ± 0.015 0.028 ± 0.051 0.171 ± 0.106 0.060 ± 0.093  − 0.010 ± 0.014  − 0.021 ± 0.033  − 0.061 ± 0.074  − 0.032 ± 0.075
AMO 0.077 ± 0.070 0.203 ± 0.183 0.128 ± 0.104 0.234 ± 0.193 0.070 ± 0.069 0.095 ± 0.099 0.093 ± 0.089 0.155 ± 0.207
PDO  − 0.000 ± 0.002 0.533 ± 0.366 0.015 ± 0.034 0.031 ± 0.045  − 0.002 ± 0.003  − 0.079 ± 0.331 0.005 ± 0.032 0.063 ± 0.053
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Figure 4 provides the annual radiative forcing from vari-
ous factors and time series of AMO and PDO indices from 
1920 to 2018. During the first warming period (segment 
1: 1920–1938), we find a significant impact of changes in 
anthropogenic forcing (0.419 ± 0.179 nat/ut) on the Arctic 
temperature, of which CO2 (0.470 ± 0.187 nat/ut), clouds 
(0.445 ± 0.204 nat/ut), and especially aerosols (0.561 ± 0.224 
nat/ut) are the major contributors (Fig. 4 and Table 1). 
The changes in the radiative forcing of land use also con-
tribute to AMTA. Besides, it is clear that enhanced PDO 
(0.533 ± 0.366 nat/ut) is the main factor determining the 
change in AMTA, and as the study shows that when PDO is 
transitioned to a positive phase, the deepening of the Aleu-
tian Low and the poleward low-level advection of extrat-
ropical air warms the Arctic (Svendsen et al. 2018). Fur-
thermore, our results show that AMO makes a contribution 

to Arctic warming, as it is the time of the transition of the 
AMO to its positive phase, with the possible transport of 
heat from the Atlantic Ocean to the Arctic Ocean. At the 
same time, the intensified solar irradiance is also a factor 
that caused Arctic warming, however, no significant impact 
of changes in volcanic forcing was detected, maybe due to a 
lull in volcanic activity (Table 1 and Fig. 4).

During the cooling period from 1939 to 1976 (segment 
2), the cooling was mainly caused by aerosol (0.233 ± 0.151 
nat/ut), cloud (0.234 ± 0.152 nat/ut), and land use albedo 
(0.245 ± 0.150 nat/ut). The radiative forcing by aerosols, 
clouds, and land use changes to a greater degree than in seg-
ment 1, indicating that as the radiative forcing decreases, the 
cooling effects decrease. Although All-GHGs, specifically 
CO2 has a significant causal effect on AMTA, the contribu-
tion is negligible. Accordingly, a combined cooling effect 

Fig. 4   Annual radiative forcing (W/m2) change for various factors; 
time series of AMO and PDO indices cover 1920 to 2018. a Total 
forcing and anthropogenic forcing; b all-GHGs and CO2; c aerosols 

and clouds; d land use; e natural radiative forcings: solar and vol-
canic; f AMO and PDO indices



1450	 H. Xiao et al.

1 3

overwhelmed the CO2 warming impact in this period. Addi-
tionally, volcanic forcing and AMO also contribute to Arctic 
cooling, and this may be explained by the same volcanic 
eruptions (e.g., the volcanic eruption on Agung in 1963) 
and transition of the AMO to its negative phase (the heat 
transported from the Atlantic to the Arctic Ocean might be 
reduced) (Fig. 4).

During the second warming period from 1977 to 2018 
(segment 3), Arctic warming was largely driven by the 
increase in all-GHGs (0.744 ± 0.220 nat/ut), particularly 
CO2 (0.892 ± 0.224 nat/ut). It is worth noting that their IF 
values were larger than that for segment 1, explaining the 
rapid warming in the Arctic during this period. Other anthro-
pogenic forcings, including clouds and land use, are also 
responsible for the warming, but the contribution to Arctic 
warming is small, owing to the low values of radiative forc-
ing. Moreover, AMO made a small contribution, and this 
corresponded to the time of the transition of the AMO to its 
positive phase, as in segment 1.

Since the IFs from AMTA to driving forces are negligi-
bly small (Table 1), and combining the results of the above 
analysis, the driving forces we evaluated here exhibit a one-
way causality (i.e., there was a causal effect from driving 
forces to Arctic warming but not from the Arctic warming 
to driving forces).

Considering that large uncertainty exists in solar forcing 
data, especially in those for the early twentieth century, and 
we can only take into account different increments of TSI 
to present different variants of possibilities. The TSI data 
we used are just as mentioned in Sect. 2. Whereas the solar 
irradiance (Fig. 4) is changed from 1920 to 1938 by only 
ca. 0.11 W/m2, the change in various TST (Fig. 5) during 
1920–1938 ranges around ca. 0.26 W/m2 (Lean1), 0.74 W/
m2 (Lean2), 0.48 W/m2 (LR08), 0.55 W/m2 (WD), 0.91 W/
m2 (C03) and 2.37 W/m2 (E18). The IFs between these dif-
ferent TSI’s and AMTA are listed in Table 2. From it we 
see that, from 1920 to 1938, overall, TSI is indeed a fac-
tor driving Aritic warming, though not the main factor (for 
comparison, note that the information flow value from the 
contemporary PDO is 0.533 ± 0.366 ut/nat). The results with 
Lean1 and C03 are similar to those in Table 1. The results 
with LR08 (0.337 ± 0.198 ut/nat), WD (0.318 ± 0.222 ut/
nat), and especially Lean2 (0.409 ± 0.179 ut/nat), all show 
an increased responsibility of TSI for Arctic warming. The 
IF from TSI to AMTA based on E18, which is 0.056 ± 0.091 
nat/ut and hence insignificant, is, however, significant during 
segment 2 (1939–1976). This indicates that the IF does not 
always increase as solar irradiance increases; in other words, 
the amount of change in TSI maybe not the factor determin-
ing the IF value. Actually, as shown in Fig. 5, there exists 
obvious differences between these diverse TSI data, but we 
cannot evaluate which one is more representative at the pre-
sent stage of our knowledge. Since the time series of TSI has 
a large uncertainty, the results may also be uncertain. Mor-
ever, the time span, which contains 19 years (1920–1938), 
is not long enough for statistical analysis, and hence may 
account for part of the uncertainty in the results. For all these 
reasons, it is not our intension to make conclusive statements 
based on these results; they should be just taken as a refer-
ence for future work.

To see which regions of the Arctic are most sensitive to 
the driving forces or where the driving forces contribute 
significantly to the changes in temperature, we apply the Fig. 5   Annual radiative forcing (W/m2) change for diverse TSI

Table 2   Information flow between TSI and AMTA variation

The unit time step is ut = 1 year. Causation significant at the 90% confidence level with an absolute IF larger than 0.1 nat/ut is shown in bold. The 
‘ ± errors’ represent the ± 90% confidence intervals

TSI TSI → AMTA (nat/year) AMTA → TSI (nat/year)

Breakpoints 0-BP 2-BPs 0-BP 2-BPs

Year 1920–2018 1920–1938 1939–1976 1977–2018 1920–2018 1920–1938 1939–1976 1977–2018

Lean1 0.201 ± 0.174  − 0.005 ± 0.048 0.087 ± 0.115 0.011 ± 0.032
Lean2 0.409 ± 0.179 0.019 ± 0.066 0.082 ± 0.112 0.016 ± 0.044
LR08 0.000 ± 0.000 0.337 ± 0.198 0.001 ± 0.046  − 0.003 ± 0.033  − 0.000 ± 0.000 0.107 ± 0.127 0.014 ± 0.029 0.032 ± 0.029
WD 0.014 ± 0.019 0.318 ± 0.222 0.000 ± 0.001 0.005 ± 0.009  − 0.002 ± 0.016 0.096 ± 0.147  − 0.000 ± 0.001  − 0.005 ± 0.008
C03 0.204 ± 0.181  − 0.003 ± 0.032 0.099 ± 0.117 0.006 ± 0.020
E18 (1920–

2016)
0.009 ± 0.027 0.056 ± 0.091 0.176 ± 0.106 0.017 ± 0.076  − 0.014 ± 0.025  − 0.058 ± 0.061  − 0.051 ± 0.076  − 0.003 ± 0.076
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same causality analysis to the Arctic-gridded AMTA. Due 
to the sparse observations of historical temperature in the 
Arctic, we use the reconstructed data H17 for 1920–2014, 
which have an improved temporal and spatial coverage, to 
represent the Arctic air surface temperature and the associ-
ated dynamic processes (Huang et al. 2017).

Figure 6 shows that the effects of anthropogenic forc-
ings on Arctic warming are mainly caused by greenhouse 
gases dominated by CO2. In segment 1, significant IFs 
for CO2 are detected over the Arctic Ocean, Norwegian 
Sea, Greenland Sea, north of Greenland, Baffin Island, and 
Baffin Sea; in particular, the Norwegian Sea has the most 
significant causality (Fig. 6g). The regions with significant 

IFs for aerosols and clouds are similar to those for CO2 
(Fig. 7); however, the regions with significant-high causal-
ity for land use are over Iceland. In segment 2, significant 
IFs for CO2 are detected over Northeastern Canada and 
Greenland. For aerosols, land use, and clouds, the sig-
nificant IFs are found over the Barents Sea and Northern 
Siberia (Fig. 7b, e, h). In segment 3, for CO2, in addition 
to Alaska, Western Siberia, and Central Siberia, there are 
significant IFs in other parts of the Arctic, and in Elles-
mere Island and the Greenland Sea as well. Regions with 
significant causality for aerosols, land use, and clouds are 
also observed over Eastern Greenland, Northern Russia, 
and Scandinavia (Fig. 7c, f, i).

a b c

d e f

g h i

Fig. 6   Spatial distributions of the information flows from anthropogenic forcings to the gridded AMTA (H17) during different periods. The stip-
pling represents significant causation at the 90% confidence level with absolute IF larger than 0.1 nat/ut
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The causalities from the natural forcings reveal different 
scenarios (Fig. 8a–f). The spatial distribution of the IF from 
the solar forcing to AMTA shows that during the considered 
period, the flow is only significant in segment 1, consistent 
with the previous analysis (Table 1), and the regions with 
significant causality are in northeastern Canada and Green-
land. For the causality from volcanic forcing to AMTA, we 
can see that in segment 1, over the Arctic it is basically 
insignificant; in segment 2, there are significant IFs over 
Ellesmere Island and the Eastern Siberian Sea; in segment 
3, the significant IFs are over the Baffin Sea and Western 
Greenland.

For internal climate modes, the causal scenario also dif-
fers. From the spatial distribution of the IF from AMO to 
AMTA (Fig. 8g, h, i), several regions with significant causal-
ity are identified in the Arctic. In segment 1, the IF value is 
significant over the North Atlantic, providing an additional 
first-order validation of the method when applied to climate 
data. In segments 2 and 3, the IFs are significant mainly over 
Northeastern Canada and Greenland. The most significant 
causality appears in segment 3, agreeing with the previous 
analysis based on Arctic mean values. For PDO, (Fig. 8j, 
k, l), the IF from it to AMTA is insignificant in segments 1 
and 2. Besides, in segment 3 it is significant over the Central 
Arctic Ocean and the Eastern Siberian Sea and its coastal 

a b c

d e f

g h i

Fig. 7   Spatial distributions of the information flows from other anthropogenic forcings to the gridded AMTA (H17) during different periods. The 
stippling represents significant causation at the 90% confidence level with absolute IF larger than 0.1 nat/ut
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a b c

d e f

g h i

j k l

Fig. 8   Spatial distributions of the information flows from natural forcings and natural internal modes to the gridded AMTA (H17) during differ-
ent periods. The stippling represents significant causation at the 90% confidence level with absolute IF larger than 0.1 nat/ut
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areas. This may be due to the transition of the PDO first to 
its negative phase and then a recent shift to the positive PDO 
phase (Screen and Francis 2016) in segments 3, with the 
gradually deepened Aleutian Low, which contributes to the 
advection of warm and moist air into the central Arctic, and 
consequently further warms the Arctic. It’s worth mention-
ing that when we apply the same causality analysis to the 
Arctic-gridded AMTA, the reconstructed data we used is 
H17, which is different from the average AMTA data when 
doing causality analysis of average AMTA. Because the data 
used are not completely consistent, therefore, in segment 1 
(1920–1938), the results do not show the effect of PDO on 
the spatial distribution of AMTA, which are not completely 
consistent with the results in Table 1. Besides, Arctic surface 
temperature data was sparse (Cowtan and Way 2014; Dodd 
et al. 2015) especially in the early twentieth century because 
it lacks continuous and detailed observations, and the spatial 
distribution of the Arctic temperature data was estimated by 
interpolation approaches (Huang et al. 2017), which would 
inevitably have some errors. Overall, we think the causality 
results from average AMTA data are relatively reasonable 
and representative, and spatial results by using reconstructed 
data H17 can be used as a reference, but more precise results 
need to be verified by using more reliable AMTA data and 
simulated with climate models in the future.

5 � Discussion and conclusions

Arctic warming’s attribution is one of the most controver-
sial issues in climate research. One reason for these con-
troversies is that the method which people usually use is 
numerical simulation. Although numerical modeling is, in 
principle, the dynamically sound way to causal inference, 
models themselves may result in quite uncertain outcomes; 
for example, different models may have different physical 
parameterizations which will yield quite different results. 
For this reason, it is somehow difficult to reach a persua-
sive conclusion based only on modeling/simulation results. 
And, for the same reason, data-driven inference based solely 
on observations provides an alternative approach, and this 
has been a common practice in climate research, as can be 
evidenced in the numerous studies based on, say, correla-
tion analyses. In this study, we followed the same tradition, 
doing a thorough investigation of causality analysis, using 
the state-of-the-art approach, namely, the recently rigor-
ously established information flow (IF) analysis. We want 
to remark that, the method we are using is physically sound; 
that is to say, it is originated from real physics, not statis-
tics. So, besides the attribution, the computed result has its 
physical meaning.

Applying a piecewise linear model, we found that there 
were three distinct segments for the trend in reconstructed 

Arctic surface air temperature. That is, two warming peri-
ods from 1920 to 1938 and 1977 to 2018 and a cooling 
period in between from 1939 to 1976 were detected. Our 
results are consistent with those of previous studies, such 
as Chylek et al. (2009), Fyfe et al. (2013), Johannessen 
et al. (2016), and Suo et al. (2013), who discovered that 
the Arctic temperature increased from the early twentieth 
century to 1939/1940, decreased from 1940 to 1969/1970, 
and increased again from 1970 to the late twentieth century. 
Our cooling period is slightly longer (1939–1977), and the 
second warming period is later than that reported in other 
studies. Additionally, a study has shown that recent and 
sustained warming began in the 1980s (ACIA 2005). How-
ever, Przybylak and Wyszyński (2020) proposed that warm-
ing was not seen until the mid-1990s by investigating the 
changes in Arctic temperature from 1951 to 2015. This may 
be due to the coverage of their study area, which is slightly 
different from ours–They used data from 37 meteorological 
stations that contain the area north of 60°N. In contrast to 
Chylek et al. (2009), who found that the warming rate in the 
Arctic was more rapid in 1910–1940 than in 1970–2008, 
our results showed that the former is slower, better reflecting 
recent observations.

Based on the IF results as computed, from 1920 to 1938, 
the long-term AMTA variation can be largely explained by 
local responses to PDO, aerosols, and other anthropogenic 
forcings (e.g., CO2 and cloud). Previously, Fyfe et al. (2013) 
showed that the observed Arctic warming was likely owing 
to the rising black carbon aerosol emissions and the transi-
tion of the AMO to its positive phase (Fyfe et al. 2013); this 
is consistent with our results on AMO. Suo et al. (2013) 
argued that much of the Arctic warming in the early twenti-
eth century could be explained by intensified solar radiation 
and a lull in volcanic activity during the 1920s to 1950s. Our 
results support this argument. From 1939 to 1976, aerosols, 
land use, and clouds are the main contributors to the tem-
perature decline, and the contribution of greenhouse gases 
dominated by CO2 to Arctic warming is small, though the 
emission of CO2 does not decrease during this period. That 
is to say, during this period, aerosols, land use, and clouds 
offset the effect of warming caused by CO2. However, given 
the small IF values and the slow changes in AMTA during 
this period, the internal climate variability may also affect 
the Arctic temperature change. Indeed, we detected a signifi-
cant effect of change in AMO on AMTA, in agreement with 
previous studies such as (Chylek et al. 2009; Johannessen 
et al. 2016), and so forth. During the warming period in 
recent years (since 1977), the long-term Arctic temperature 
variation is dominated by the influence of all-GHGs, and 
CO2 in particular. This substantiates once again the obser-
vation that Arctic warming is mainly GHG warming (Fyfe 
et al. 2013).
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To summarize, we applied a piecewise linear regres-
sion model to explore the long-term trends in the AMTA 
in 1920–2018 to detect climate trends and their structural 
changes in time series based on the principle of least squares, 
with a priori unknown breakpoints. The best piecewise lin-
ear model is a 2-BPs trend model that divides the evolution 
of AMTA into three distinct segments by the years 1938 
and 1976. We quantitatively estimated the causal relation 
between driving forces and AMTA using a recently devel-
oped rigorous formalism of IF. By calculating the IF value of 
each driving force to AMTA for each segment in the 2-BPs 
model, we found that the main drivers of the AMTA trend 
are both from anthropogenic and some natural forcings. 
Overall, there is one-way causation from driving forces to 
Arctic warming. We also found that CO2 is the main con-
tributor to Arctic warming. The impacts of CO2 and other 
anthropogenic forcings (aerosols, cloud, and land use) and 
natural forcings (PDO and AMO) on the Arctic are impor-
tant, and need to be taken into account when addressing and 
predicting future climate change in the Arctic.

We remark that, although we segmented the evolu-
tion of AMTA, there are still some uncertainties about 
the segmentation; that is to say, the length of each period 
may vary slightly. We discussed the driving forces associ-
ated with each period, but the set of driving forces is far 
from complete. Other drivers may exist. Also, the period 
of 1920–1938, which contains 19 years, is not long enough 
for statistical analysis. That is to say, the ensemble is small, 
inevitably leading to uncertainty in the results. Consider-
ing this, our results just provide a reference for the Arctic 
warming investigation. Moreover, because the causal rela-
tionship depends on the temperature data and forcing data, 
the uncertainties of temperature and forcing data result in the 
uncertain causalities. Besides, it lacks long time recond of 
the forcings such as AMOC, which prevents us from making 
a complete causal inference with all the identified climate 
modes. Further verification with, say climate model experi-
ments are needed in future studies.
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