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Abstract

Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe

cognitive impairment in social communication and interaction. Previous studies

have reported that abnormal functional connectivity patterns within the default

mode network (DMN) were associated with social dysfunction in ASD. However,

how the altered causal connectivity pattern within the DMN affects the social func-

tioning in ASD remains largely unclear. Here, we introduced the Liang information

flow method, widely applied to climate science and quantum mechanics, to uncover

the brain causal network patterns in ASD. Compared with the healthy controls (HC),

we observed that the interactions among the dorsal medial prefrontal cortex

(dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and

temporo-parietal junction showed more inter-regional causal connectivity differ-

ences in ASD. For the topological property analysis, we also found the clustering

coefficient of DMN and the In-Out degree of anterior medial prefrontal cortex were

significantly decreased in ASD. Furthermore, we found that the causal connectivity

from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These

altered causal connectivity patterns indicated that the DMN inter-regions informa-

tion processing was perturbed in ASD. In particular, we found that the dMPFC acts

as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Over-

all, our findings indicated that the Liang information flow method could serve as an

important way to explore the DMN causal connectivity patterns, and it also can

provide novel insights into the nueromechanisms underlying DMN dysfunction

in ASD.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental

disorder worldwide, with point prevalence exceeding �1% (Rolls

et al., 2020). Individuals with ASD mainly exhibit severe difficulties in

social interaction and communication, as well as restricted and repeti-

tive stereotyped behaviors (American Psychiatric Association, 2013).

Yet, the pathophysiology of ASD remains unknown. Most previous

studies have reported that the abnormal functional connectivity pat-

terns within and between the default mode network (DMN) are highly

related to the clinical symptoms of ASD (Assaf et al., 2010; Feng

et al., 2022; Lombardo et al., 2019). However, the causal connectivity

pattern within the DMN in ASD, which is believed to provide an

important clue to understanding the underlying neuro-mechanism of

ASD, remains largely unclear.

The DMN is a large-scale brain network that shows reduced

activity when the participants perform a task and becomes more

active when they are at rest (Bathelt & Geurts, 2021; Raichle

et al., 2001). It consists of a set of brain regions, including posterior

cingulate cortex (PCC), medial prefrontal cortex (MPFC), precuneus,

and the medial, lateral, and inferior parietal regions (Andrews-Hanna

et al., 2010; Chen et al., 2021), responsible for self-reference proces-

sing (Broyd et al., 2009; D'Argembeau et al., 2005; Gusnard

et al., 2001), autobiographical memory (Nielsen et al., 2014), social

cognition (Mars et al., 2012; Schilbach et al., 2008), emotional proces-

sing (Broyd et al., 2009), theory of mind (ToM) (Chen et al., 2021;

Saxe & Kanwisher, 2003), and so on. Numerous neuroimaging studies

have demonstrated abnormal DMN structure and function in ASD

(Lynch et al., 2013; Monk et al., 2009; Padmanabhan et al., 2017). For

instance, Lynch et al. (2013) found that the over-connectivity of the

PCC and precuneus within DMN is related to the social severity of

ASD. Padmanabhan et al. (2017) showed that PCC, dorsal and ventral

MPFC, and temporal–parietal junction (TPJ) play distinct interacting

roles in monitoring the mental state of the self and the evaluation of

others. Monk et al. (2009) found that the functional connectivity

(FC) between the PCC and superior frontal gyrus was decreased,

while the FC between the PCC and the right temporal lobe and right

parahippocampal gyrus were increased in ASD by comparing with the

control group. In our previous study, we also found that low intra-

DMN FC variability was associated with social deficits in ASD (Feng

et al., 2022). However, these studies are mainly based on FC analysis,

which cannot capture the direction of information interaction.

FC refers to the spatial–temporal correlation between brain

regions without the flow of information (Biswal et al., 1995), while

effective connectivity (EC) refers to the causal influence exerted by

one brain region on another (Kami�nski et al., 2001). Recently, many

studies have demonstrated that causal connections in brain networks

can better reflect the interactions between brain regions (Rolls

et al., 2020; Talebi et al., 2019). Compared with FC analysis, EC or

causal connectivity analysis can not only evaluate the interaction

strength between brain regions, but also capture the flow of informa-

tion. Several common methods are widely used in constructing causal

connectivity networks, such as Granger causality analysis (GCA) and

transfer entropy (TE). GCA uses a data-driven method to infer the

causal relationship between multivariate time series based on multi-

variate autoregressive (MVAR) (Venkatesh & Grover, 2015). Sridharan

et al. (2008) found that the right anterior insula plays an important

causal role in switching the DMN and executive-control network

(ECN) during cognitive information processing using the GCA. Wang

et al. (2020) found that the MPFC showed significant causal influ-

ences on the PCC within the DMN in healthy subjects using the GCA.

Transfer entropy (TE) is an extension of the concept of mutual infor-

mation, which is based entropy to infer quantified information trans-

fer (Schreiber, 2000). For example, Zhao et al. (2021) found the

decreased causal connectivity from right ventral posterior cingulate

cortex to right ventral anterior cingulate cortex and increased causal

connectivity from right dorsal frontal cortex to left piriform cortex

within the DMN in ASD using entropy connectivity. Dejman et al.

(2017) also found a significant difference in average degree between

HC and ASD groups during a passive face processing task by integrat-

ing transfer entropy and graph theory.

Although traditional causal analysis methods provide new perspec-

tives for causal network construction, they have shortcomings in their

application. For example, GCA makes assumptions in the calculation

process (Harmah et al., 2020), and it requires stationarity of the time

series analyzed in the GCA calculation. Furthermore, GCA measures

causal relation in a statistical sense, and a larger GCA value does not

necessarily mean a higher true causal relation (Harmah et al., 2020). TE

requires long time series, and the computation is complex (Hlaváčková-

Schindler et al., 2007). Recently, Liang proposed a novel method to cal-

culate the causal relation, namely Liang information flow (Liang, 2008;

Liang, 2014; Liang, 2016b; Liang & Kleeman, 2005). Liang (2014)

defined the calculation method of Liang information flow through a rig-

orously derived formalism and gave a specific calculation expression.

The Liang information flow method have been shown to be effective in

capturing the causal relation between time series (Liang, 2021; Zhang

et al., 2021), and has been widely applied to a variety of fields in differ-

ent disciplines, such as quantum mechanics (Yi & Bose, 2022), climate

science (Cheng & Redfern, 2022; Docquier et al., 2022; Liang

et al., 2021), brain electroencephalography (EEG) network (Hristopulos

et al., 2019). Its advantages include its very effective performance in

computing, as well as its accuracy, and, most of all, its universal applica-

bility because of its firm physical ground, and hence many intrinsic

properties that make accurate causal discovery possible. Thus, the Liang

information flow method can provide a new effective way to capture

the causal connectivity within the DMN.

In this study, we combined the Liang causal information flow

method and graph theory to investigate the resting-state DMN causal

connectivity patterns in ASD and HC. We first construct the DMN

causal connectivity networks for the two groups using the Liang infor-

mation flow. We then compared the differences in causal network

connectivity patterns between the two groups. Finally, we also corre-

lated the causal connectivity patterns to the ASD symptom severity

scores to better understand the underlying neural mechanism of ASD.

In addition, using the causal connectivity patterns as features, we con-

struct a classification model for identifying ASD. Our results provide a

novel perspective for understanding the DMN causal connectivity

pattern in ASD.
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2 | MATERIALS AND METHOD

2.1 | Participants

The study includes 79 patients with ASD and 105 healthy controls

(HCs). All subjects are recruited from the public site at NYU Langone

Medical Center in ABIDE (http://fcon_1000.projects.nitrc.org/indi/

abide/) (Di Martino et al., 2014). The criteria for the inclusion of the

subjects were as follows: (1) age between 6 and 18 years old; (2) head

motion not exceeding 2 mm translation or 2� rotation in any direction;

(3) subjects with mean framewise displacement (FD) (Power

et al., 2012) below mean + 2 � SD; (4) subjects with complete

scanned images. Finally, 48 ASD patients (42 boys, six girls; age: 6–

18 years) and 48 HC subjects (39 boys, nine girls; age: 6–18 years)

were selected for our study. The Autism Diagnostic Observation

Schedule (ADOS) (Lord et al., 2000) and Autism Diagnostic Interview-

Revised (ADI-R) (Lord et al., 1994) were used as clinical symptoms

assessment for further analysis. The detailed demographic information

for the included participants is listed in Table 1.

2.2 | Resting-state fMRI data acquisition

All original resting-state images of participants were scanned by

3 Tesla Siemens Allegra scanner using an echo-planar imaging (EPI)

sequence with whole-brain coverage. During the resting-state fMRI

scan, most participants were instructed to open their eyes and relax

while projecting a white crosshair on a screen against a black

background. The acquisition parameters of the resting state fMRI

images are: repetition time (TR) = 2000 ms, echo time (TE) = 15 ms,

slice number = 33, slice thickness = 4.0 mm, flip angle (FA) = 90�,

field of view = 240 mm, voxel size = 3.0 � 3.0 � 4.0 mm3. For each

subject, a 6-min scanning was performed, resulting in 180 volumes.

2.3 | fMRI data preprocessing

All original resting-state fMRI data were preprocessed using the Data

Procession Assistant for Resting-State fMRI toolbox (Yan &

Zang, 2010) (DPARSF, http://rfmri.org/DPARSF), which is based on

the Statistical Parametric Mapping 12 toolbox (SPM12, https://www.

fil.ion.ucl.ac.uk/spm/) on the MATLAB 2018a platform. The first

10 volumes were removed to ensure the magnetic field was stable,

leaving 170 volumes. All the blood-oxygen-level-dependent (BOLD)

time series were corrected for temporal differences in slice timing.

Then, head movement correction was performed. All images were

normalized to the standard Montreal Neurological Institute (MNI)

space, and the voxel size after normalization was 3 � 3 � 3 mm3. All

normalized images were smoothed with a Gaussian kernel (full width

at half maximum = 6 mm) and then linearly detrended. The signals

from the white matter, cerebrospinal fluid, 24 rigid body motion

parameters, and head motion scrubbing regressors were regressed

from the data. The head motion scrubbing regressors were applied

with an FD threshold above 0.5 as well as two back and one forward

neighbor. Global signal regression (GSR) is still controversial in resting-

state research. Several studies show that using GSR may produce

TABLE 1 The demographics of the participants

ASD (n = 48) HC (n = 48) p-value

Age (year) 11.73 ± 2.56 (6–18) 11.71 ± 2.95 (6–18) .9734a

Gender 42/6 (M/F) 39/9 (M/F) .3991b

Mean FD 0.16 ± 0.07 0.12 ± 0.04 .0028a

FIQ 106.83 ± 17.79 113.81 ± 13.32 .0323a

PIQ 109.48 ± 19.29 110.38 ± 14.59 .7980a

VIQ 103.40 ± 15.50 113.94 ± 12.13 .0004a

ADI-R

Social score 20.09 ± 5.11 (n = 45) — —

Communication score 15.76 ± 4.01 (n = 46) — —

RRB score 6.02 ± 2.65 (n = 46) — —

ADOS

Social score 8.06 ± 9.96 — —

Communication score 3.46 ± 1.65 — —

Total score 11.52 ± 4.24 — —

RRB score 2.73 ± 1.54 — —

Note: Values shown are: mean ± SD.

Abbreviations: ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; FD, framewise displacement; FIQ, Full-Scale

Intelligence Quotient; PIQ, Performance Intelligence Quotient; RRB score, Restricted, Repetitive and Stereotyped Behaviors; VIQ, Verbal Intelligence Quotient.
ap value was obtained by two-sample t-test, two-tailed.
bp value was obtained by chi-square test, two-tailed.
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anti-correlation (Murphy et al., 2009; Murphy & Fox, 2017). We thus

did not perform GSR in the current study. Finally, bandpass filtering

(0.01–0.08 Hz) was performed to reduce the influence of high-

frequency noise (He et al., 2020).

2.4 | Analysis procedure

Figure 1 shows the data analysis process. We first extracted the time

series of the regions of interest (ROIs) within the DMN. Then, using

the Liang information flow method, we constructed the DMN causal

connectivity networks for ASDs and HCs. To better understand the

causal connectivity pattern of DMN, we further calculated the net-

work topology properties for the two groups. After that, we compared

the causal connectivity differences between the two groups and

revealed the relationships between the connectivity with significant

differences and clinical symptoms of ASD. Finally, the obtained causal

connectivity and network properties were used to construct a classifi-

cation model to classify the two groups. The details of these steps are

described in the following sections.

2.5 | Regions of interest

Inspired by previous studies (Andrews-Hanna et al., 2010; Bathelt &

Geurts, 2021; Du et al., 2016), 11 ROIs were selected, which are cru-

cial regions of the DMN. The DMN can be mainly divided into three

parts, namely, the midline core including the PCC and aMPFC, the

dMPFC subsystem, including the dMPFC, TPJ, LTC, and TempP, and

the MTL subsystem, including the vMPFC, pIPL, Rsp, PHC, and

HF. According to previous studies (Andrews-Hanna et al., 2010; Du

et al., 2016), only the left and middle areas were used in our study to

prevent a strong correlation between mirror structures. The ROIs

were defined as a sphere with a radius of 6 mm centered on the

corresponding MNI coordinate. The MNI coordinates for these

11 ROIs are listed in Table 2. After that, we extracted the averaged

time series signals for each ROI across subjects. These time series

were used for calculating the causal connectivity network.

2.6 | Construction of the causal network of
the DMN

This study used the unnormalized multivariate Liang information flow

analysis proposed by Liang et al. (2021) to construct the causal con-

nectivity network of the DMN. For each subject, we obtained an

11 � 11 directed causal connectivity matrix. For these directed causal

connectivity matrices, we first used the built-in test method in the

Liang information flow to test the statistical significance of the causal

F IGURE 1 The analysis procedure.

TABLE 2 Montreal Neurological Institute (MNI) coordinates of 11
ROIs within DMN

Brain regions

MNI coordinates

x y z

Posterior cingulate cortex (PCC) �8 �56 26

Anterior medial prefrontal cortex (aMPFC) �6 52 �2

Dorsal medial prefrontal cortex (dMPFC) 0 52 26

Temporo-parietal junction (TPJ) �54 �54 28

Lateral temporal cortex (LTC) �60 �24 �18

Temporal pole (TempP) �50 14 �40

Ventral medial prefrontal cortex (vMPFC) 0 26 �18

Posterior inferior parietal lobule (pIPL) �44 �74 32

Retrosplenial cortex (Rsp) �14 �52 8

Parahippocampal cortex (PHC) �28 �40 �12

Hippocampal formation (HF) �22 �20 �26

2282 CONG ET AL.
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matrix, and the details are listed in Section Liang information flow

analysis. We set the confidence level at 90% and considered the

causal connectivity that failed the significance test to be spurious

causal relation, which we hereafter set to zero. After that, we per-

formed the z-score on the causal connectivity matrices to remove the

physical units (Abdi, 2007). Subsequently, we regressed the mean FD

(Chen et al., 2016) across subjects to further reduce the impact of

head motion. The new sparse causality connectivity matrices were

used for the following analysis. Finally, we calculated the group-

averaged causal connectivity matrix for the ASDs and HCs. We also

calculated the distance of the mean causal matrix between ASD and

HC using Pearson's correlation (Benesty et al., 2009) to assess the

similarity of the causal network architecture. The Liang information

flow method will be further introduced below.

2.7 | Liang information flow analysis

Information flow is a real concept in general physics and system

dynamics, it is only vaguely studied in a loose sense without a formal

expression (Liang & Kleeman, 2005). Motivated by a finding by Liang

and Kleeman (2005), Liang (2016b) was able to put information flow

on a rigorous footing and establish the whole formalism from the first

principles. A particular feature is the natural embedding of causality

within formalism, thanks to a proven theorem on causality. This is in

contrast to the previous studies where “information flow” and causal-

ity are irrelated because of the inappropriate ways to define informa-

tion flow (Lizier & Prokopenko, 2010).

Recently, Liang conducted a maximum likelihood estimation

(MLE) for the result in Liang (2016b), providing a very concise formula

for quantitative causal discovery, which can effectively capture the

causal relation among time series (Liang, 2014, 2021). This explicitly

obtained expression is very concise, involving only sample covariance

(Liang, 2014, 2021). In the following, we only list the final result; for a

brief description of the theory, please refer to Liang et al. (2021),

section 2.

For a vector of state variables X¼ X1,…Xdð Þ, consider a d-

dimensional continuous-time stochastic system

dX¼F X,tð ÞdtþB X,tð ÞdW, ð1Þ

where F¼ F1,F2,…Fdð Þ may be arbitrary nonlinear differentiable func-

tions of X and t, W is a vector of standard Wiener processes, and

B¼ bij
� �

d�m is the matrix of perturbation amplitudes which may also

be any differentiable functions of X and t. Liang (2016b) established

that the rate of information flowing from Xj to Xi is (in nats per unit

time) is:

Tj!i ¼�E
1
ρi

ð
ℝd�2

∂Fiρ�j
∂xi

dx�ij

� �
þ1
2
E

1
ρi

ð
ℝd�2

∂2 giiρ�j
� �

∂x2i
dx�ij

 !
, ð2Þ

where dx�ij signifies dx1…dxi�1dxiþ1…dxj�1dxjþ1…dxd, E stands for

mathematical expectation, gii ¼
P2

k¼1bikbik , ρi ¼ ρi xið Þ is the marginal

pdf of Xi, and ρ�j ¼
Ð
ℝρ xð Þdx�j Theoretically, if Tj!i is not zero, then Xj

is cause to Xi, and its magnitude measures the size of the causality;

otherwise, it is not causal. Of course, in real applications, a signifi-

cance test must be performed.

The above formula is exact. It is, however, impossible to calculate

the expectations if the joint probability distribution is not known.

Liang et al. (2021) later on made a maximum likelihood estimation and

found that the rate of Liang information flowing from X2 to X1 can be

estimated as follows: (in nats per unit time) is

T̂2!1 ¼ 1
detC

�
Xd
j¼1

Δ2jCj,d1 � C12

C11
, ð3Þ

where Cij denotes the sample covariance between Xi and Xj, Cj,d1 is the

sample covariance between Xj and the derived series X
:

1
, X

:

1
¼ X

:

i,n

� �
is

the Euler forward differencing approximation of dXi
dt : X

:

i,n
¼ Xi,nþk�Xi,n

kΔt , kΔt

is the time interval between Xi,nþk and Xi,n. To ensure accuracy, usually

k¼1. Δij represents the cofactors of the matrix C¼ Cij

� �
.

The T value obtained must be tested for significance. We can use

the Fisher information matrix to simplify the problem. According to

the property of maximum likelihood estimation, T̂2!1 was approxi-

mately normally distributed near its true value with a variance
C12
C11

� 	2
σ̂2a12 . Here σ̂2a12 is the variance of â12, which is estimated as fol-

lows. Denote θ¼ f1,a11,a12,…a1d,b1ð Þ, the Fisher information matrix

can be calculated I¼ Iij
� �

,

Iij ¼�1
N

XN
n¼1

∂2 logρ Xnþ1jXn; θ̂
� �
∂θi∂θj

: ð4Þ

The inverse NIð Þ�1 is the covariance matrix of θ̂, from which can be

found â12. Given a significance level the confidence interval can be

easily found.

2.8 | Granger causality analysis

In 1969, Granger introduced the concept of GCA, that is, if X2 is

known to help predict the future of X1, then X2 “causes” X1

(Granger, 1969). In this article, we used the conditional Granger cau-

sality connectivity to calculate the causal connectivity through the

“Granger causal connectivity analysis” (GCCA) toolbox (Seth, 2010).
To illustrate conditional Granger causality analysis, consider time

series Xt, Yt, and Zt. First, let the joint autoregressive representation of

Xt and Zt be (Ding et al., 2006)

Xt ¼
X∞
j¼1

a1jXt�jþ
X∞
j¼1

b1jZt�jþ ε1t,

Zt ¼
X∞
j¼1

c1jXt�jþ
X∞
j¼1

d1jZt�jþ γ1t,

ð5Þ

where the covariance matrix of the noise terms is as follows:

X
1
¼ Λ1 Τ1

Τ1 Γ1

� �
: ð6Þ
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Then consider the joint autoregressive representation of all three pro-

cesses Xt, Yt, and Zt

Xt ¼
X∞
j¼1

a2jXt�jþ
X∞
j¼1

b2jYt�jþ
X∞
j¼1

c2jZt�jþε2t,

Yt ¼
X∞
j¼1

d2jXt�jþ
X∞
j¼1

e2jYt�jþ
X∞
j¼1

f2jZt�jþη2t,

Zt ¼
X∞
j¼1

u2jXt�jþ
X∞
j¼1

v2jYt�jþ
X∞
j¼1

w2jZt�jþ γ2t,

ð7Þ

where the covariance matrix of the noise terms is

X
4
¼

ΓXX ΓXY ΓXZ

ΓYX ΓYY ΓYZ

ΓZX ΓZY ΓZZ

0
B@

1
CA: ð8Þ

So the Granger causality from Yt to Xt conditional on Zt can be defined

as

FY!XjZ ¼ ln
Λ1

ΓXX
ð9Þ

Therefore, FY!XjZ ¼0 meaning that no further improvement in the

prediction of Xt can be expected by including past measurements of

Yt (Ding et al., 2006). And when there is still a direct component from

Yt to Xt, the inclusion of past measurements of Yt in addition to that

of Xt and Zt results in better predictions of Xt, which may lead to

ΓXX <Λ1, and FY!XjZ >0 (Ding et al., 2006).

2.9 | Network topology properties

To further explore the DMN causal network patterns, we calculated

five common directed network topology properties, including charac-

teristic path length (CPL), clustering coefficient (CC), global efficiency

(GE), local efficiency (LE), and In–Out degree (Din–out). The Brain Con-

nectivity Toolbox (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010)

(https://www.nitrc.org/projects/bct/) was used to calculate the net-

work properties for each subject. During the calculation, the causality

matrices were first changed into their absolute values. Then, a

weighted and directed matrix (causal matrix) was applied to calculate

the topological network properties for each subject. These topological

network properties can be defined as,

CPL! ¼1
n

X
i � N

P
j � N, j≠ i

d!ij

n�1
ð10Þ

CC! ¼1
n

X
i � N

1
2

P
j,h � N aijþaji

� �
aihþahið Þ ajhþajh

� �

kouti þkini

� 	
kouti þkini �1
� 	

�2
P
j � N

aijaji
ð11Þ

GE! ¼1
n

X
i � N

P
j � N, j≠ i

d!ij
� 	�1

n�1
ð12Þ

LE! ¼ 1
2n

X
i � N

P
j,h � N, j≠ i

aijþaji
� �

aihþahið Þ d!jh Nið Þ
h i�1

þ d!hj Nið Þ
h i�1

� �

kouti þkini

� 	
kouti þkini �1
� 	

�2
P
j � N

aijaji

ð13Þ

Din-out ¼ kini �kouti ð14Þ

where aij is the connection strength from nodes i to j, d!ij is the short-

est directed path length from nodes i to j, d!ij ¼Paij � gi!j
aij， where

gi!j is the directed shortest path from node i to j. kouti is the out

degree of node i, kouti ¼P j � Naij, kini is the in-degree of node i,

kini ¼P j � Naji, n is the total node number of the current network. N is

the number of the set of network nodes.

In addition, the In–Out degrees of the nodes were calculated to

evaluate the causal source and target (Gao et al., 2011; Jiao

et al., 2011). Nodes with positive In–Out degrees are considered

causal targets, and the nodes with negative In–Out degrees are con-

sidered causal sources.

2.10 | Identification of the ASD patients based on
DMN causal connectivity patterns

Based on the casual connectivity and network properties, we

attempted to identify ASD patients from the HCs. We first extracted

causal connectivity and network topology properties indexes as fea-

tures for each subject. Then, a 121-dimensional causal connectivity

and a 15-dimensional network property features were obtained and

used for classification. These features are normalized to �1 and

1. Given that several features are uninformative or redundant for clas-

sification, reducing the number of features can improve performance

(Dosenbach et al., 2010). F score method (Liu et al., 2015; Zhang

et al., 2019) was used to select features to improve the classification

performance. In this study, support vector machine (SVM) classifier

with linear kernel was used (Chang & Lin, 2011). To evaluate the per-

formance of classifier, a leave-one-out cross-validation (LOOCV) strat-

egy was performed. In the linear kernel SVM, only parameter

C (penalty coefficient) takes the default value (i.e., C = 1).

2.11 | Statistical analysis

We used two-sample t-tests (two-tailed) to compare the causal con-

nectivity and network properties differences in DMN for two groups.

For the causal connectivity difference, the significant difference level

was set at p < .05 (pFDR corrected [Storey, 2002]). For the network

property difference, the significant difference level was set at p < .05.

Pearson's correlation coefficient (Benesty et al., 2009) was used to

assess the relationships between causality relations and the clinical

symptom of ASD (i.e., ADOS and ADI scores), where the correlation

was considered significant when p < .05.
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3 | RESULTS

3.1 | Between-group DMN causal connectivity
difference

GCA and Liang information flow are both popular causal analysis

methods. Currently, the GCA is widely used in brain science, while

Liang information flow method is commonly used in atmospheric

science. In our study, we compared the causal connectivity pat-

terns of DMN for ASD patients and HC using the Liang informa-

tion flow (Figure 2a–d) and GCA (Figure 2e–h), respectively. For

the GCA, we used the Akaike Information Criterion (AIC) and the

Bayesian information criterion (BIC) to identify the AR order, the

AR order was 10. Figure 2a,b,e,f show the group-averaged causal

connectivity of DMN using the Liang information flow and GCA in

ASD and HC, respectively. We found the causal network architec-

ture of the DMN is different between the two groups, where the

correlation is 0.4239 and 0.3565 for Liang information flow

and GCA.

For the Liang information flow, to compare the causal connectiv-

ity difference of the DMN between ASD and HC, we performed a

two-sample t-test (pFDR, p < .05) on individual DMN causal connec-

tivity matrices. Figure 2c,d display the causal connectivity differences

of DMN between the two groups. Compared with the HC group, we

found the causal connections in PCC ! TempP, PCC ! HF,

aMPFC ! dMPFC, dMPFC ! vMPFC, dMPFC ! PHC, and

dMPFC ! HF were significantly decreased in the ASD group. In con-

trast, the causal connections in the TPJ ! TempP, TPJ ! vMPFC,

TPJ ! HF, LTC ! Rsp, TempP ! vMPFC, and PHC ! PCC were sig-

nificantly increased in ASD. We also found that the PCC, dMPFC, TPJ,

vMPFC, TempP, and HF produce more causal connectivity

differences.

For the GCA, we also performed a two-sample t-test (pFDR,

p < 0.05) on individual DMN causal connectivity matrices for the two

groups. Figure 2g,h show the causal connectivity difference of DMN

between ASD and HC. Compared with the HC group, we found the

causal connections in dMPFC ! PCC, TempP ! PCC, TPJ ! LTC,

LTC ! TPJ, pIPL ! LTC, vMPFC ! HF, pIPL ! TempP, and

pIPL ! Rsp were significantly decreased in ASD, while the causal con-

nections in aMPFC ! Rsp, dMPFC ! TPJ, dMPFC ! Rsp,

TPJ ! TempP, PHC ! Rsp, and HF ! PCC were significantly

increased in ASD. In addition, we found the dMPFC, PCC, TPJ, Rsp,

and pIPL produce more causal connectivity differences.

The DMN causal connectivity differences based on both methods

involve the dMPFC and MTL subsystems. The main difference

between the two approaches is that the causal connectivity across

vMPFC obtained by Liang information flow shows more difference,

while GCA has no significant causal difference. In addition, compared

with the GCA, we found that the causal connectivity difference shows

a hierarchical regulation model using Liang information flow, which

could provide a novel perspective for understanding the DMN causal

connectivity pattern in ASD.

3.2 | Between-group DMN network topological
properties difference

To better investigate the causal connectivity network patterns, we

calculated the network properties for each subject and compared net-

work properties differences between ASD and HC. Figure 3a shows

the between-group DMN network properties difference. We found

significant differences in the clustering coefficient, while there were

no significant differences in the characteristic path length, global effi-

ciency, and local efficiency. We also found that the node aMPFC has

significant differences (p = .0159) in In-Out degree between ASD

and HC.

The mean In–Out degree of the nodes in the DMN is listed in

Figure 3b. For the two groups, we consistently found that the In–Out

degree of the TPJ, TempP, vMPFC, Rsp, and HF was >0 and they act

as a causal target, while the In–Out degree of the PCC, aMPFC, pIPL,

and PHC were <0 and they act as a causal source. In particular, we

found that the causal directions of the dMPFC and LTC were opposite

between ASD and HC.

3.3 | Relationships between DMN causal network
patterns and ASD symptoms

Figure 4 shows the correlations between the DMN causal network pat-

terns and the clinical symptoms of ASD. For the causal connectivity, we

found that the causal connectivity from dMPFC to vMPFC within

DMN was negatively correlated with the ADOS social score (r = �.375,

p = .0087), ADOS communication score (r = �.404, p = .0044), and

ADOS total score (r = �.418, p = .0031). The causal connectivity from

dMPFC to PHC was positively correlated with the ADOS communica-

tion score (r = .371, p = .0095), the causal connectivity from dMPFC to

HF was negatively correlated with the ADOS communication score

(r = �.287, p = .0480). For the network properties, we found that the

clustering coefficient of the DMN was negatively correlated with the

ADI-R communication scores (r = �.413, p = .0043).

3.4 | Classification of the two groups

We used the causal connectivity and network properties of the DMN

as features to construct a classification model. Table 3 shows the clas-

sification results of SVM using the F-score method in the different

feature selection conditions. The highest classification accuracy

(78.12%) was obtained based on the combination of causal connectiv-

ity and network properties.

4 | DISCUSSION

To the best of our knowledge, this is the first study to apply the Liang

causal information flow method to fMRI data to explore the resting
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DMN inter-regional causal connectivity patterns in ASD. Based on the

seed method, we constructed the DMN causal connectivity network

and calculated the network topology properties. Compared with HC,

we observed that the interactions among the PCC, dMPFC, TPJ,

TempP, vMPFC, and HF showed more inter-regional causal

connectivity differences in ASD. The network clustering coefficient

and the In–Out degrees of aMPFC were significantly decreased in

ASD. Moreover, these DMN causal connectivity network patterns,

especially the causal connections from dMPFC to vMPFC, PHC, and

HF, were correlated with the clinical symptoms (i.e., ADOS social,

F IGURE 2 The mean causal
connectivity patterns of DMN for
ASD and HC groups were
constructed by Liang information
flow (a and b) and GCA (e and f),
respectively. (c) The causal
connectivity differences between
the HC group and the ASD group
(pFDR p < .05) were obtained

using Liang information flow.
(d) Causal connectivity
differences t-values map. (g) The
causal connectivity differences
between the HC group and the
ASD group (pFDR p < .05) were
obtained using GCA. (h) Causal
connectivity differences t-values
map. The blue edges represent
decreased causal connectivity.
The red edges represent
increased causal connectivity. The
area marked with a star indicates
a significant causal connectivity
difference.
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ADOS total, and ADOS communication) of ASD and can be important

features to identify ASD. Our findings highlight the utility of the Liang

information flow method in brain causal network analysis and verify

that altered inter-DMN causal connectivity patterns are associated

with social deficits in ASD.

4.1 | Methodological considerations

In terms of methodology, GCA and Liang information flow are both

commonly used time series causality analysis tools

(McCracken, 2016). GCA is a method that relies on models of the time

series data for causal inference, that is, multivariate autoregressive

(MVAR). However, several previous studies have indicated that the

MVAR-based causal model only considered the lag relation between

time series, whereas the instantaneous effect is ignored (Faes

et al., 2013; Salehi et al., 2022). In addition, Granger himself also

pointed out that GCA may not necessarily a true causal relation

(Granger, 1963). Compared with GCA, since the Liang information

flow method is rigorously established from first principles, it does not

require assumptions and may be able to capture the real causality of

brain networks. For this reason, it has been widely used to quantify

causal relations in classical systems (Liang, 2016b) and network theory

(Li & Liu, 2019). It has been widely used in finance (Liang, 2016a), cli-

mate (Liang et al., 2021), quantum mechanics (Yi & Bose, 2022), and

neuroscience (Hristopulos et al., 2019). Particularly, Hristopulos et al.

(2019) applied this causal connectivity approach to the EEG time

series to study the information flow disruption in a concussed brain,

showing that it could effectively construct causal networks for differ-

ent cognitive activities. Following this, we utilized the Liang informa-

tion flow method to construct the causal connectivity network from

resting-state fMRI, which entailed some interesting results. Further-

more, we also compared the results of the two methods (see

Appendix S1). Below we only discuss the results of Liang

information flow.

4.2 | Altered causal network architecture of DMN
in ASD

The DMN is a higher-order cognitive network that shows substantial

overlap with the “social brain” network (Blakemore, 2008). Many

studies have reported that abnormal functional network patterns

within- and between-DMN were closely associated with social deficits

in ASD (Feng et al., 2022; Lynch et al., 2013; Padmanabhan

et al., 2017). The FC alteration in DMN could be a potential

F IGURE 3 (a) The differences in four network properties between the two groups. The star represents the significant differences, where
p < .05. (b) The mean In–Out degrees of the nodes in the ASD and HC group. The negative values represent the node as the causal source, and
positive values represent the node as the causal target.
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endophenotype for social deficits in ASD (Feng et al., 2022) because

the DMN architecture has an important impact on the information

integration of the brain during rest and task performance (Smallwood

et al., 2021). Thirty years of brain imaging research have converged to

uncover that the DMN is a heterogeneous brain system network that

can be further fractionated into multiple dissociated “subsystems”
and/or “subnetworks” (Andrews-Hanna et al., 2010). In a previous

study conducted by Andrews-Hanna et al. (2010), it was found that

the DMN comprises of three dissociated components, including a

midline core, a dMPFC subsystem, and a Medial Temporal Lobe (MTL)

subsystem.

In addition, our results revealed that, in terms of causal connectiv-

ity, ASD patients exhibit significantly reduced strengths from core to

another two subsystems (i.e., PCC ! TempP, PCC ! HF, and

aMPFC ! dMPFC) and from dMPFC to MTL subsystem

(i.e., dMPFC ! vMPFC, dMPFC ! PHC, and dMPFC ! HF), as well

as significantly increased strengths from TPJ to MTL subsystem

(i.e., TPJ ! vMPFC and TPJ ! HF) compared with HC. Furthermore,

the excitation–inhibition imbalance of DMN may lead to social impair-

ment (Padmanabhan et al., 2017; Paine et al., 2017; Trakoshis

et al., 2020). This finding indicated that the core (PCC and aMPFC)

regions exerted less influence on other subsystems. The dMPFC and

TPJ are two major regions in the dMPFC subsystem and the vMPFC

and HF are two key regions in the MTL subsystem. The causal interac-

tion difference among these four regions indicated that the dMPFC

subsystem may act as a mentor to influence on the MTL subsystem,

indicating the influence exerted by the dMPFC subsystem on the

MTL subsystem may modulate the social function of the DMN. We

F IGURE 4 The correlation between the difference in causal relations and the behavioral scales of the ASD group.

TABLE 3 Classification results of the SVM using F score based on the DMN causal patterns

Causal relations differences Network properties Network properties and causal relations differences

Accuracy 77.08% 68.75% 78.12%

Sensitivity 73.91% 69.57% 80.43%

Specificity 84.00% 68.00% 80.00%
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also found that the DMN causal connectivity network architecture is

relatively dissimilar (r = .4239) between ASD and HC compared with

previous reported resting-state functional connectivity network (Cole

et al., 2014; Schultz & Cole, 2016; Zhang et al., 2019). This finding

implied that the resting DMN inter-regional information coupling does

not have an “intrinsic” pattern between ASD and HC, whereas exhi-

biting a disease-related excitation–inhibition imbalance causal net-

work pattern. Thus, we suggested that the Liang information flow

causal connectivity analysis could deepen our knowledge of the DMN

network architecture and provide a new perspective to enrich our

understanding of ASD.

4.3 | Reduced causal connectivity
aMPFC ! dMPFC and dMPFC ! vMPFC

The existing studies have shown that the MPFC is recognized as the

key component of the neurocircuitry related to various social cogni-

tion (Smallwood et al., 2021). Damage to MPFC impairs the ability to

process social information related to oneself (present and future self)

in ASD (Guise & Shapiro, 2017; Maggi & Humphries, 2022;

Padmanabhan et al., 2017). The MPFC often comprises three func-

tionally dissociable and hierarchically organized subregions: vMPFC,

aMPFC, and dMPFC(Gusnard et al., 2001). These three subregions are

located in the different subsystems of the DMN, respectively, yet

they are functionally inter-connected with each other and play dis-

tinct roles in social cognition (Padmanabhan et al., 2017). In our study,

we found that the causal connectivity aMPFC ! dMPFC and

dMPFC ! vMPFC were significantly reduced in ASD compared with

HC. Previously, Kim (2020) suggested that the distinctive subregions

in the MPFC exhibited a hierarchical allostatic regulation model that

integrates a wide range of MPFC functions. Such causal connectivity

differences may provide new support for the hierarchical connectivity

model of MPFC. Using the degree analysis, we also found that the

dMPFC acts as a causal information target in ASD, but a causal infor-

mation source in HC. Compared with HC, ASD patients showed sig-

nificantly reduced In–Out degree in the aMPFC. The In–Out degree

of a node can measure the relative contribution of a node to causality

(Jiao et al., 2011). For the causal (effective) connectivity, the

decreased causal connectivity may represent a reduction in the influ-

ence (inhibits/facilitates) of one region on another, while increased

causal connections may represent an increase in the intervention (dis-

ruption or promotion) of one region on another (Jiao et al., 2011).

These findings may imply that the aMPFC and dMPFC within DMN

may be impaired in ASD, indicating weaker influence (directed interac-

tion) of aMPFC on dMPFC and dMPFC on vMPFC.

Furthermore, we found that the causal connectivity

dMPFC ! vMPFC was significantly negatively correlated with the

neuropsychological score (ADOS total, ADOS social, and ADOS com-

munication) of ASD. The higher the ADOS and ADI-R scores, the

more severe the ASD symptoms (Lefort-Besnard et al., 2020). This

result indicated that the aberrant afferent connection of vMPFC from

dMPFC inhibits social behavior in ASD. The dMPFC is a key region of

the dMPFC subsystem of the DMN and is involved in self-reference

guidelines or introspective mental activity-related spontaneity, while

the vMPFC is a key region of the MTL subsystem of the DMN and is

considered for the integration of cognitive and emotional processing

(Gusnard & Raichle, 2001). In a previous study conducted by Inagaki

and Meyer (2020), they suggested that the greater dMPFC subsystem

connectivity at rest was associated with greater social support. Based

on the transcranial magnetic stimulation (TMS) study, Ferrari et al.

(2016) found that the dMPFC played a causal role in integrating social

behaviors. Martin et al. (2017) using focal high-definition transcranial

direct current stimulation (HD-tDCS), they demonstrated that the

dMPFC played a causal role in integrating higher-order information

from others/external sources into that of the self across cognitive

domains. In addition, Salehinejad et al. (2021) found that by using

anodal tDCS to increase the activation of the vMPFC, the ASD symp-

toms were significantly reduced. Thus, we suspect that more sup-

pressed from dMPFC to vMPFC may disrupt the social task

performance by issuing signals to interfere with the control set main-

tained by vMPFC.

4.4 | Increased causal connectivity from TPJ to
MTL subsystem

TPJ is another hub region in the dMPFC subsystem of DMN. Previous

studies have shown that the TPJ plays a crucial role in mediating

social cognition (Igelström et al., 2015; Igelström et al., 2017; Kelly

et al., 2014) and ToM theory (Chen et al., 2021). It contributes to mul-

tisensory integration, a sense of agency, and stimulus-driven attention

functions (Eddy, 2016). Several studies also have shown that the

lesions of the TPJ may cause ASD (Nobusako et al., 2017). We found

that the causal connections from TPJ to MTL subsystem

(TPJ ! vMPFC, TPJ ! HF) were significantly increased, indicating

the TPJ exerted more influence on the MTL system. Andrews-Hanna

et al. (2010) demonstrated that the dMPFC subsystem is mainly

involved in social processing, while the MTL subsystem is mainly

involved in memory retrieval. Previous studies have also shown that

TPJ is overactivated. For example, Chien et al. (2015) found that the

posterior right TPJ was hyperconnected to the right ventral occipito-

temporal in ASD boys, and this abnormal hyperconnectivity was

related to social behavior. Schulte-Rüther et al. (2011) found

increased activation of the right TPJ during self-task in ASD patients.

Furthermore, Hadjikhani et al. (2014) found increased activations in

the TPJ of ASD during cognitive reappraisal compared with HC. Iidaka

et al. (2019) found that the left TPJ was hyperconnected to the bilat-

eral PCC using a large dataset from multiple sites in the ABIDEII. In

addition, Eack et al. (2017) found that ASD had significantly enhanced

connectivity between left TPJ and the left orbitofrontal cortex and

bilateral medial prefrontal cortices compared with HC in the direct

comparisons of connectivity strength. This abnormal hyperconnectiv-

ity was associated with the pathophysiology of ASD. These findings

suggested that the enhanced causal connectivity observed in ASD

may imply TPJ dysfunction. Combined with the discussion above, our
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results indicated that the excitation–inhibition imbalance (TPJ and

dMPFC) within the dMPFC subsystem might lead to disorganized

information processing in regional circuitry and potentially reduced

sociability.

4.5 | Global causal network topological properties
within DMN

In addition to identifying the causal connectivity differences, we also

assessed the causal network topographic properties for each subject.

The brain network is a usually small-world network that exhibits a large

clustering coefficient and a small shortest path length (Bassett &

Bullmore, 2006). We found that the global clustering coefficient was

significantly lower in ASD compared with HC. However, no significant

difference was apparent in characteristic path length, global efficiency,

and local efficiency between the two groups. Our finding is in line with

previous reports. For example, Rudie et al. (2013) found that the

default and higher-order visual regions displayed reduced functional

segregation (lower clustering coefficient) in ASD. Based on the EEG

network, Barttfeld et al. (2011) also found that the brain network

topology of ASD patients departs from small-world behavior, which

has less clustering coefficient. The global clustering coefficient is a

major measurement of the functional segregation of the whole net-

work (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). In Yerys's

report, they found that the DMN shows a pattern of poor functional

segregation in ASD (Yerys et al., 2015). Thus, we suggested that the

lower clustering coefficient could cause the loss of small-world of

DMN in ASD, affecting the efficiency of information transmission and

storage within DMN. Furthermore, we found that higher scores

accompanied lower global clustering coefficients. This topological alter-

ation indicated an overall reduced causal segregation (i.e., excitation/

inhibition imbalance) of the DMN with increasing ASD severity.

4.6 | Identification of ASD using causal networks

In clinical diagnosis, a challenging problem is the accurate identifica-

tion of ASD, and there is an urgent need to provide an effective

method. Thus, in this study, we used the causal connectivity obtained

by Liang information flow to classify ASD from HC. We found that

the DMN causal connectivity pattern could be an important feature in

identifying ASD (see Table 3), and the combination of features (causal

connectivity and network properties) produced a higher classification

accuracy than a single feature, achieving a 78.12% accuracy with a lin-

ear SVM classifier. Meanwhile, the traditional approach to distinguish-

ing ASD from HC is based on functional connectivity (Hull

et al., 2017; Santana et al., 2022). However, cognitive activity or con-

nectivity of the brain is largely determined by the causal influences

between brain regions. Figures 2 and 3 show that the changes in

causal connectivity and network properties are important for ASD.

Therefore, the Liang information flow method could offer a new strat-

egy for the clinical diagnosis of ASD.

5 | LIMITATIONS

There are some limitations in the current study. First, our sample size

is relatively small since we only use the data from the NYU site in

ABIDE. In addition, although previous studies have shown that the

prevalence of ASD in males is �3 to 4 times higher than in females

(Lawrence et al., 2020), the gap between males and females was even

greater in our study. Future studies should use multisite data and

larger samples to overcome the gender mismatch problem, replication

and further exploration. Second, we identified alterations in causal

connectivity within the DMN and obtained the brain regions associ-

ated with social behaviors, but our study was based on resting-state

fMRI data and may not be able to capture real socially relevant pro-

cesses. Future work should further explore the alteration of network

causal connectivity during social tasks. In addition, we should combine

TMS/tDCS to verify the causal connectivity results we obtained using

the Liang information flow method in future studies.

6 | CONCLUSION

To conclude, we used the Liang causal information flow method to

explore the causal interactions within the DMN involving ASD

patients. Our findings showed a specific disruption of causal connec-

tivity among the core subsystem, dMPFC subsystem, and MTL sub-

system of the DMN in ASD patients. Compared with the HC group,

we found that the causal connectivity from the core subsystem to the

dMPFC and MTL subsystem (PCC ! TempP, PCC ! HF, and

aMPFC ! dMPFC) was significantly decreased in the ASD group. We

also found the imbalance inhibits/facilitates interactions from the

dMPFC subsystem to the MTL subsystem, such as significantly

increased causal connectivity in dMPFC ! vMPFC, dMPFC ! PHC,

and dMPFC ! HF, and significantly decreased causal connectivity in

TPJ ! TempP, TPJ ! vMPFC, TPJ ! HF, TempP ! vMPFC, and

PHC ! PCC. For the topological property analysis, we also found the

clustering coefficient of DMN and the In–Out degrees of aMPFC

were significantly decreased in ASD. Moreover, these DMN causal

connectivity network patterns, especially the causal connections from

dMPFC to vMPFC, PHC, and HF, were correlated with the clinical

symptoms of ASD and can be important features in identifying ASD.

These differences in causal connectivity patterns indicated that the

DMN inter-regions information processing or signal issuing was per-

turbed in ASD, which might contribute to the deficits of social

cognition.
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